o Introduction

Often an unbalance of forces is produced in rotary or reciprocating machinery due to the inertia forces associated with
the moving masses. Balancing is the process of designing or modifying machinery so that the unbalance is reduced to
an acceptable level and if possible is eliminated entirely.

A particle or mass maving in a circular path experiences mrep?

a centripetal acceleration and a force is required to produce mew?
it. An equal and opposite force acting radially outwards acts
on the axis of rotation and is known as centrifugal force [Fig. {\
14.1(a)]. This is a disturbing force on the axis of rotation, the
magnitude of which is constant but the direction changes
with the rotation of the mass.

In a revolving rotor, the centrifugal force remains balanced
as long as the centre of the mass of the rotor lies on the axis {a) )
of the shaft. When the centre of mass does not lie on the axis  Fig. 14:%
or there is an eccentricity, an unbalanced force is produced

(b)

{Fig. 14.1b). This type of unbalance is very common. For example, in steam turbine rotors, engine ¢crankshafts, rotary
compressors and centrifugal pumps.

Most of the serious problems encountered in high-speed machinery are the diract result of unbalanced forces.
These forces exerted on the frame by the moving machine members are time varying, impart vibratory motion to the
frame and produce noise. Also, there are human discomfort and detrimental effects on the machine performance and
the structural integrity of the machine foundation.

The most commen approach to balancing is by redistributing the mass which may be accomplished by addition or
removal of mass from various machine members.

There are two basic types of unbalance--rotating unbalance and reciprocating unhalance—which may occur
separately or in combination.

STATIC BALANCING

A system of rotating masses is said to be in static balance if the combined mass centre of the system lies on
the axis of rotation.
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Figure 14.2 shows arigid rotor revolving with a
constant angular velocity of @ rad/s. A number of
masses, say three, are depicted by point masses at
different radii in the same transverse plane. They
may represent different kinds of rotating masses
such as turbine biades, eccentric discs, etc, If m,
my and m; are the masses revolving at radii Tt
and r; respectively in the same plane, then each
mass produces a centrifugal force acting radially
outwards from the axis of rotation. Let F be the
vector sum of these forces,

F=mr ef + mr,of + myr,of

The rotor is said to be statically balanced if the
vector sum F is zero.

If F is not zero, i.e., the rotor is unbalanced,
then introduce a counterweight (balance weight)
of mass m,, at radius r_ to balance the rotor so
that

mh

(b)

M + oyl + e + mor @ = 0 (14.1)

or
M\ E ity + mar, =0 (i4.1a)
The magnitude of eithcr m,. or r, may be selected and of the other can be catculated.
In general, if 2mr is the vector sum of m,r,, T, nFy, myr,, etc., then
Zmr+mr,=0 (14.2)
The equation can be solved either mathematically or graphically. To solve it mathematically, divide each
force into its x and z components,

Le., X mrcos 8+ myr, cos 8.=0
. and Zmrsin8+myr.sing =0
or
M. cos 6, =-Ymrcos 8 (i)
and
mr.sin@. = -—Ymrsin 8 {ii)
Squaring and adding (i) and (i),
mr. = \/(E mr cos 8)? + (X mr sin 6)2 - (14.3)
Dividing (i1) by (1),
_ —X.mrsiné
tan §, = i S— (14.4)

The signs of the numerator and denominator of this function identify the quadrant of the angle.

In graphical solution, vectors, mr,, MUy, sy, etc., are added. If they close in a loop, the system is
balanced. Otherwise. the closing vector will be giving m r_. Its direction identifies the angular position of the
countermass relative to the other masses.




Example 14,1 Three masses of 8 kg, 12 kg

and 15 kg attached at radial
o : distances of 8G¢ mm, 100
L mm and 60 mm respectively

to a disc on a shaft are in complete balance.
Determine the angular positions of the masses
of 12 kg and 15 kg relative to the 8-kg mass.

Solution
mr; =8 x 80 =640
myry =12 % 100 = 1200
myry =15 % 60=900
For graphical solution, take a vector representing
m,r| of 640-units magnitude along the x-axis. Take
the other two vectors through its two ends and
complete the triangle. Note that the triangle can be
completed in four ways as shown in Fig. 14.3. The
results of the four options are
1. 8,=227.4°and 8, = 79°
2. 6,=132.6°and 8, = 281°
3. 8,=2274°and 8, ="79°
4, 8,=132.6°and 6, =281°
However, these are only two sets of solutions.

IX79° 4)182.6°

Balancing 47@

Analvtical solution

Sar=10
or 640 cos 0° + 1200 cos8, + 990 cos; =0
or 1200 cos@, = — (640 + 900 cosh;y) N
and 640 sin 0° + 1200 sinf, + 900 sind; =0
or 1200 sin8, = -900 sind, (i1)

Squaring and adding (i) and (ii),

1200% = 6407 + 900° cos?8; + 2 X 640 x 900 x
cosf, + 9007 sin’6,

= 6407 + 900% + 2 X 640 x 900 X cos6,

cosf, = 0.1913

or 8, =79 or 281°

When 8, = 79°, 1200 sin &, = -900 sin 79°

or sin 8, = - 0.736

or 8, =—-474%or 132.6°0r 227 4%

But as sin8, is negative and cos6, is also negative

which can be found from (i), the comesponding
angle 8, = 227.4°

In a similar way by taking 8; = 281°, §; can be

found to be 132.6°

Example 14.2 A circular disc mounted on a

: shaft carries three attached
masses of 4 kg, 3 kg and 2.5
kg at radial distances of
75 mm, 85 mm and 50 mm and at the angular
positions of 45°, 135° and 240° respectively
The angular positions are measured counter-
clockwise from the reference line along the x-
axis. Determine the amount of the countermass
at a radial distance of 75 mm required for the
static balance.

Solution Figure 14.2 shows the various masses
according to the given data,

mrp=4x75 =300,
mars =3 x 85 = 255,
mayry =25 x 30 =125
Ymrt+mr =0

or 300 cos 45° + 255 cos 135°+ 125 cos
240°+mr.cos 8.=0

and 300 cos 45° + 255 sin 135 + 125 cos
240° + m r.sin . =0

Squaring, adding and then solving,
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300 cos 45°+ 255 cos 135° " tan @ = —284.2 _ 2z -9.26
[+125 cos 240° J © o —(30.68) 43068
o +(3005in 45°+ 255 sinl35°]2 L 8.=276°12
+125 cos 240° 6. lics in the fourth quadrant (- numerator is
or m,x75=[(-30.68) + (284.2)%]'2 negative and denominator is positive).
=285.8 kg.mm The graphical solution has been carried out in
or m,=3.8] kg Fig. 14.3(b).

When several masses rotate in different planes, the centrifugal forces,

in addition to being out of balance, also form couples. A system of Myt l?= Motalw?
rotating masses is in dynamic batance when there does not exist any f N
resultant centrifugal force as well as resultant couple, C

In the work that follows, the products of m» and mr/ (instead of o Lg | —p
mrer and mrler), usually, have been referred as force and couple
respectively as it is more convenient to draw force and couple @

polygons with these quantities.

If m, and m;, arc two masses (Fig. 14.4) revolving diametrically oppesite to each other in different planes
such that m »= myr,, the centrifugal forces are balanced, but an unbalanced couple of magnitude m,r,/
(= myryd) is introduced. The couple acts in a plane that contains the axis of rotation and the two masses. Thus,
the couple is of constant magnitude but variable direction.

IRANSFERENCE OF A FORCE FROM ONE PLANE TO ANOTHER /"

Let m be the mass at radius r rotating in a plane ) Reference

at a distance / from another plane {Fig. 14.5). The ! plane

equilibrium of the system does not change if two equal '

and opposite forces F, = F, (= mr)} are added in the @

latter plane. The net effect would be a single force F| l"

{= mr) in the second plane having the direction of the = f

original force along with a couple m#f formed by the 1

forces mr and £, in a plane containing these forces and {tmaginary)

the shaft. As the moment of a couple is the same about (Origin) 8;‘:2:; TUT:::BU through 90°
any point in its plane (equal to the product of one of Lr}tfofogurectlon

the forces and the arm), the couple may be assumed 10
rotate the shaft about the peint O.

The axis of rotation of the couple is thus a ling 04
drawn perpendicular to the shaft through O. A line drawn parallel to the axis and to a suitable scale can
represent the couple vectorially, the sense of rotation of which is given by the right-hand corkscrew rule,
i.e., for a clockwise couple, the direction is to be away from the viewer. However, in balancing problems,
it becomes convenient if the couple vectors are drawn by turning them through 90°, i.e., by drawing them
parallel to the force vectors. This does not affect their relative positions.
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A plane passing through a peint such as O and perpendicular to the axis of the shaft is called a reference

plane. Other masses acting in different plancs can be transferred to the reference plane in a similar manner
a5 discussed above.,

"BALANCING OF SEVERAL MASSES IN DIFFERENT PLANES

Let there be a rotor revolving
with a uniform angular
velocity @ [Fig. 14.6{(a)].
my, m, and a1 are the masses
attached to the rotor at radii
r. ¥, and r; respectively.
The masses m,, m, and m,
rotate in planes 1, 2 and
3 respectively. Choose a
reference plane at O so that
the distances of the plancs 1,
2 and 3 from O are /| I, and
[, respectively.

Transference of each
unbalanced force to the
reference plane introduces
the like number of forces %ig. ] 4_5‘3
and couples. * '

The unbalanced forces in the reference plane are m,r,or, myr,e? and myry@7 acting radially outwards.

The unbalanced couples in the reference plane are m re#l,, m,ryafl, and msry@fl, which may be
represented by vectors parallel to the respective force vectors, i.e., parallel to the respective radii of m,, i,
and nt;.

For complete batancing of the rotor, the resultant force and the resultant couple both should be zero, i.e.,

m e F + oy eF + mary e = O (14.5)

merak\  \TFih

ey
POl ; W Y
P c2fc2lez

and
mr 6 + myr, La? + mary Lot =0 (14.6)
If the Eqs (14.5) and (14.6) are not satisfied, then there are unbalanced forces and couples. A mass placed
in the reference plane may satisfy the force equation but the couple cquation is satisfied only by two equal
forces in different transverse planes. Thus, in general, two planes are needed to balance a system of rotating
masses.
Therefore, in order to satisfy Eqs (14.5) and (14.6), introduce two counter-masses m_, and m,, at radii
r.and r,, respectively. Then Eq. (14.5) may be written as
ML QP + T + sl @F + M T @F + M aT 00 =0 (14.7)
or
mxy) kgt Fmary b marg tmar, =0 (14.7a)
In general,
Xmr +m vy +mor, =0 (14.8)
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Let the two countermasses be placed in transverse planes at axial locations O and (, i.e., the countermass
m,., be placed in the reference plane and the distance of the plane of m,, be /., from the reference plane.
Equation (14.6) modifies to (taking moments about (3}

@+ oty L@k + mary P +mor o Lef =0 (14.9)
or
mr gty byl mar i, =0 (14.9a)
In general,
Zmrl + i ar o f =0 (14.10)

Thus, Egs (14.8) and (14.10) are the necessary conditions for dynamic balancing of the rotor. Again the
equations can be solved mathematically or graphicaily.
Dividing Eq. (14.10) into component form

ImrlcosB~+ mrqf, cos8, =0

and Zmrising + mox »f 5 sinf., = 0
or

M oF ol 3 €088, = -Emricos® (i)
and

M E ol 5 8108, = —Emrising (ii)

Squaring and adding (i) and (ii)

M,2rady = J(E mrl cos 0) + (Zmrl sin 0)? (14.11)
Dividing (ii) by (i),
an 6. = —Zmrisin@
27 _Zmrlcos 8 (14.12)

After cbtaining the values of m,, and 8, from the above equations, solve Eq. (14.8) by taking its
components,

Mty = J( I nr cos 8+ m, 7, 008 0,5) + (Zmrlsin @ +m 1., sin 8, (14.13)
and

—(Zmrsin@+m,r,sind.,)

tang,, =
“ —(Zmrcos@+m,r., co88 ;) (14.14)

To solve Eqs (14.8) and (14.10) graphically, Eq. (14.10) is solved first and a couple polygon is made
by adding the known vectors and considering each vector parallel to the radial line of the mass. Then the
closing vector will be m_,r ./, the direction of which specifics the angular position of the countermass m,,
[Fig. 14.6(c)] in the plane at the point Q. Then solve Eq. (14.8) and make a force polygon by adding the
known vectors (along with the vector m,r ;). The closing vector is m,r,,, identifying the magnitude and
the direction of the countermass m,, [Fig. 14.6(d)]. Figure 14.6(b) represents the position of the balancing
masses on the rotating shaft.



Example 14.3 A rotating shaft carries three
unbalanced masses of 4 kg,
3 kg and 2.5 kg at radial
distances of 75 mm, 85 mm
and 50 mm and at the angular positions of 45°,
135° and 240° respectively. The second and the
third masses are in the planes at 200 mm and 375
mm from the plane of the first mass. The angular
positions are measured counter-clockwise from
the reference line along x-axis and viewing the
shaft from the first mass end.

The shaft length is 800 mm between bearings
and the distance between the plane of the first
mass and the bearing at that end is 225 mm.
Determine the amount of the countermasses
in planes at 75 mm from the bearings for
the complete balance of the shafi. The first
countermass is to be in a plane between the first
mas’s and the bearing and the second mass in a
plane between the third mass and the bearing at
that end.

Solution Figure 14.7(a) shows the planes of
unbalanced masses as well as the planes of the
countermasses. Plane | is to be taken as the
reference plane and the various distances are to be
considered from this plane.

Bafancing 483
Analytical solution
Lo= (800 — 75 x 2) = 650 mm
1 =225-75 =150 mm
{5y = 150 + 200 = 350 mm
f,=150+375= 525 mm
= dx 75 150=45000 mpr =4x75=300
maraly =3 % 85 350 = 89250 myr, =3 x85=255
il =25%50x 525 =65 625 mr=25%x50=125
Imri+myr ., l,=0

or 4500 cos45°+ 89250 cos 135° + 635 625 cos 240°
+ mc‘Zr('ZIL'Z COSGLQ =0

and 45000 sin 45° + 89 250 sitn 135° + 65 625 sin 240°
+ Mt .l sind, =0

Squaring, adding and then solving,

( 45000 cos 45° + 89 250 T i

cos 135° + 65 625 cos 240°
Mt

< 45000 sin 45°+89 250 )’
sin 135° + 65 625 sin 240°
= [(—64 102)° + (38 096)°]2
or m_y % 40 x 650 = 74 568

m., =2R868kg
—38096
tan 9{.2 = —:-{—_éTﬁE)_ = —{}.594

6., =329.3%or 329°18’

Now,
Imr+m,r,+mor,=10
or 300 cos 457+ 255 cos 135° + 125 cos 240° +
i r, cos B+ 2868 x40 cos 329.3=10
and 300sin 45°+255s5in 135°+ 125 sin 240° +
m_ ¥, sin 6,+ 2.868 x405in 3293 =0
Squaring, adding and then solving,
[ (300 cos 45°+ 255 cos 1357 |
+ 125 cos 240° + 2.868
x 40 cos 329.3°Y +
{300sin 45° + 2555in 135°
+125sin 2407 + 2 R68
| X 40sin 329.3°)*

1:2

Moy =

i,y x 75 = [(67.96) +(225.62)°])'"2 = 235.63
m =3 14kg :
-225.62

tan 3(.1 = W

= 332,60, =253.2° or 253°12’
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Graphical solution
The graphical solution has also been shown in
Figs 14.7(c) and (d). From Fig. 14.7(c),
M.aFal o = T4 000
74 000

m.4 = W =2.846 kg at 3_22__

From Fig. 14.7{d),
MoFa = 235’
235
75
Figure 14.7(b)} represents the position of the
balancing masses on the rotating shaft.
Solution by using complex numbers
mpd L6 =(4x 75 x 150) £45% =45 000 £45°
=31820+;31820
maryly £0, =(3 x 85 x 350) £135° = 89 250/135°
=-63 109 +; 63 109
Mapsly £0,=(2.5%x50% 525} £240°=- 65625 £240°
=-32 813 -7 56 833

LMy = =3.13kgat 253°

Now,
mprd, L0, + mrody 26+ marsdy £ 8+ morsla
£6,=0

(31 820+ 31 820) + (—63 109 + 63 109)
+(-32813 —; 56 833)+ Mol 28, =

Meatialer £0,=64 102738096 =74 568 £329.3°

mo % 40 X 650 = 74 568

mc, = 2.868 kg

Similarly,

myr 28, =(4X75) £45°=300 £45°=212.1 +/212.1

myry £ 8, =(3x85)£135°=255£135°=—180.3+/180.3

mars £ 0,=~(2.5x50) £240°=125 £240°=—62.5-7108.3

rg 228, = (2.868 x 40) £329.3° = 11472
£329.3°=98.6 -/ 586
Now,

mp L0 4 myry L0, + ma L0y Y Mgty L8,
+ Maly ZB(I =0

2121+ 212.1) + (- 180.3 +; 180.3) +

(-62.5-7108.3) + (98.6 —j 58.6)+ m .5

£3293° =90

M, 28, =679 -] 2255

=2355 £253.2°

or

m, x75=23563

my =3.14kg

A shaft supported in bearings
that are 1.6 m apart projects
400 mm beyond bearings
BENS at each end. It carriés three
puﬂeys one at each end and one at the centre
of its length. The masses of the end pulleys are
40 kg and 22 kg and their centres of mass are
at 12 mm and 18 mm respectively from the shaft
axes. The mass of the centre pulley is 38 kg
and its centre of mass is 15 mm from the shaft
axis. The pulleys are arranged in a manner
that ‘they give static balance. Deterinine the
(i) relative angular positions of the pulleys
(i) dynamic forces developed on the bearmgs
when the shaft rotates af 210 rpm '

Example 14.4

Solution
260.3°
Puliey 3 (22 kg) -—--
§ Bearing
o
136.4°
= -—Pulley 2 (38kg) Y —-—--
Bearing
Pualley 1 (40 kg) 0°

0.480
Force friangle

(o} (d)

Couple triangle

rig. 14

Figure 14.8(a) shows the planes of the three
pulleys as well as of the two bearings.

Let the plane of the pulley 1 be the reference
plane.



myr, = 40 x 0.012 = 0.48
maraly = 38 % 0.015 X 1.2 = 0.684
myrydy = 22X 0.018 X 2.4 = 0.95

Complete the force triangle as the three sides
are known [Fig. 14.8(b)]. The mass at the plane 1 is
chosen at 0° angle. By completing it, the directions
of the other two masses are known which have been
marked in Fig. 14.8(c).

Now, as the shaft is in complete static balance,
there is only unbalanced couple which is 10 be the
same about all planes. Thus, reactions due to the
unbalanced couple are to be equal and opposite on
the two bearings.

To find the magnitude of the unbalanced couple,
add the two couple vectors as shown in Fig. 14.8(d).
The closing side shown in dotted line represents the
magnitude of the unbalanced couple.

The magnitude, mri = 0.795 on measurement.

. unbalanced couple = mrar ./

= 0.795 x M]H —384.5N.m
60

The reaction on each bearing = ils'%— =240.3 N
Four masses 4, B, C and D
carried by a rotating shaft at
radii 80 mm, 100 mm, 160
mm and 120 mm respectively
are complee‘ebz balanced. Masses B, C and D are
8 kg, 4 kg and 3 kg respectively. Determine the
mass A and the relative angular positions of the
Jourmasses ifthe planes are spaced 500 mm apart,

Examp_le 14.5

Selution Figure 14.9(a) shows the planes of the
four masses. Let plane A4 be the reference plane.
my, = m X 0.08=0.08 m
myl, = 8x0.1x05=04
myr, = 8x0.1=08
mrd = 4x0.16% 1 =0.64
mr, = 4x0.16 =0.64
mad, =3%0.12%1.5=054
my,=3x012=036

Balancing 435?

Mylyly

gl el

Coupla polygon

Force polygon

c

(c) (d)

%@ig. 14-.@5

On taking the planc 4 as the reference plane, there
are only three couple vectors. Assuming the direction
of any of the masses B, C or D at 0° angle, a vector
triangle can be made as shown in Fig, 14.9(b). As
the shaft is in complete balance, the artowheads may
be put in the same order. This provides the directions
of masses of C and D relative to that of B,

Now, as the shaft is in complete static balance
also, a force polygon may be completed as shown in
Fig. 14.9(c). The closing side provides the magnitude
of the mass radius.

The magnitude, m,r, = 0.444 on measurement.

or m,=0444/008 =555kg

The angular positions of masses 4, C and D
relative to that of the mass B are 95.5°, 157.5° and
227° counter-clockwise as shown in Fig. 14.9(d).

Example 14.6 A rotor is completely balanced -
when masses of 2 kg and 1.2
kg are added temporarily in
planes A and D each at 200 mm
radius as shown in Fig. 14.10¢a). The balanced
mass in the plane A is along the x-axis whereas

in the plane D, it is at 12(P counter-clockwise.
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11 is desired that the actual balancing is to be
done by adding permanent masses in planes B
and C, each at 120 mm radius. Determine the
magnitudes and the directions of the masses B
and C.

Solution

Fig. 14.10

It is given that the rotor is completely balanced
with the temporary masses in planes .f and D. Tt is
required to find the masses and their directions in
planes & and C which provide the same resultant
force and the couple so that the rotor is again
balanced.

Unbaianced couple about a plane at B

=myx, (L) vmpd,=-my, +mr,d,

oao gt

where mr, i, =2x0.2x(-0.35)=-0.14

[Za Rty

and myrd,=1.2%0.2%0.75=0.18

Assuming the masses required in planes B and
C be m, and m,. respectively, then the magnitude of
the couples due to these masses must be equal to the

above couple, i.e.,
O0+mrd. =—myi +rmpy,l,

area

Thus, the resultant of the two vectors on the right-

hand sidc provides the vector m,r /. as shown in Fig.
in 14.10(b). On measurement, m_r /. = 0.28 at 146.5°

0.28
- - = 0
.= 0.5%0.12 4.67 kg at 146‘5

t

Similarly, the vector sum of the forces due to
masscs at 8 and € must be equal to the vector sum
of the forces due to masses at 4 and D, i.e.,

-+ ML = My, + miq
or My =mJyx, tmg,—mr,

Now, mr,=2x02=04

myr;=12x02=024
my, =4.67x0.12=0.56

Thus the resultant of the three vectors on the
right-hand side provides the vector m,r, as shown
in Fig. 14.10(c). On measurement, m,r, = 0.75 at
352.5°

: '“075—625]( t352.5°

som, o1z 0 kea .
Figure 14.10(d) shows angular positions of all

the four masses.

Example 14.7 Four masses A, B, C and D
are completely  balanced.
Masses C and D make angles
of 90° and 195° respectively
with that of mass B in the

counter-clockwise direction. The rorating masses

have the following properties:

m, =25 kg r, = 150 mm
=40 kg ry, = 200 mm
my=35ke r. = [00 mm
ry= 180 mm

Planes B and C are 250 mm apart. Determine the

(i} mass A and its angular position with that
of mass B

(ii) positions of all the planes relative to plane
of mass 4



Solution Refer Fig. 14,11(a).
mr, =25 % 100 = 5000
m r, =40 x 100 = 4000
m ;=35 x 180 = 6300
For complete balance, taking 8,= 0°
2mrcos 8=10 and 2 mr sin 6=}
ie., m,x 150 x cos 8, + 5000 cos 0° + 4000 cos
90° + 6300 cos 193° =0
orm, x 130 x cos 8, + 5000+ 0 -6085=0
or 150 m_ cos 8, = 1085 5}
and m, X 130 X sin &, + 5000 sin 0° + 4000 sin
90° + 6300 sin 193° =0
orm, X 150 x sin 8,+ 0+ 40001631 =0
or 150 m, sin 6, =—2369 (ii)

1857

A(RP)
{mm}
{a) (b)
C
r mg¥d G
“ s Male
- 8 PO AN (4000)
D o \\ra (2600)\
LY A myry (5000}
{c) {d)
Mgedls
mcrc'llc
(1 x 10)

“Fig. 14.1¥

Balancing 48‘7

Squaring and adding (i) and (ii),
22 500 n15 = (1085)% + (=2369)?
or m? =30175
or m, =17.37 kg

Dividing i1) by (i),

-236.9
tanf, =————=-2.184
A% =083 '
orB, = 294.6° or 204°3¢’

For complete balance, the couple equations are
Ymrtcos 8= 0 and 2mrisin 8=10

Taking A as the reference plane,

50001, cos 0° + 4000 7, cos 90° + 6300 /, cos

195°=10
or 5000 7, = 60851,
or hL,=12171,
and 5000 4, sin 0° + 4000 7, sin 90° + 6300 7,
sin 195° =
or 4000/, = 1631 {;
or {.=0.4078 1,
or I, +250=0.4078,
or 1.2177,+250=04078 {,
or (.8092 /,=-250
or {;=-309 mm

{,=1217{,=1.217 % (-309) = -376 mm
{ =1, +250=-376+250=-126 mm
The correct positions of the planes have been
shown in Figs. 14.11 (b) and (c).
To sclve the problem graphically, m,r, is

obtained from the vector sum of m,r,, mr and mr,
[Fig. 14.11(d)]. On measuring,

mr, = 2600,
2
m, = 16::)0 =173kg and 8, = 294.5°

Now, m_r = 4000 x 250 = 1 x 10% taking B as
the reference plane. Take the vector m r. /. and from
its two ends, draw lines parallel to m r, and m gz,
Thus, formuing a tnangle [Fig. 14.11{e)]. Measuring

the two sides,

985 000
mﬂra]a = 985 000. fa = m = 3?9 mm
g dy =437 000, I, = %gﬂﬂ 66 mm

/, and /; establish the relative positions of the
planes.
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FORCE BALANCING OF LINKAGES

Balancing of a linkage implies that the total
centre of ils mass remains stationary so that
the vector sum of all the frame forces always
remains zero. Figure 14.12 shows a four-
link mechanism. a, b, ¢ and J represent the
magnitudes of the links 48, BC, CD and DA
respectively. The link masses are m_, m, and
m,, located at G, G, and G. respectively. Let
the coordinates g;, ¢; describe the position of
these points within each link,

As in any configuration of the mechanism,
the links of the mechanism can be considered
as vectors, Thus,

ae’®s + he'® —ce' — de' =0 (14.15)

or et = % {dem“ - ae + e } (14.15a)

Let & be the centre of mass for the system of moving links and let g define the position of G with respect
to origin A.

Total mass of moving links, m = m_+ my, + m,. (i4.16)

Then for the centre of mass of the entire system to remain stationary at a point, the following expression
must be a constant (acceleration due to weight is constant).

mg =mg +mg,+meg. (14.17)
where g, g, and g_are the vectors representing the positions of masses m,, m, and m, respectively, w.r.t. 4.
mg="m, gae” Ba+@a) 4 n, [ae;&" + ghejw" ey ", [dem“ + gi.ei(e"w") ]

0, 8 By i j 0, i,
=m,g %% +myac® + myg,e® e +m de® +m,g e

Inserting the value of ¢ from (14.15a)

i)

o, i, i 1 e : 0, \ i 8 0, i,
mg = m,g,e% e + mae® +mg, 7 (de"™ —ue™ + e ) +mde™ +m g e P

. a - . . ‘.' . -
— iy ; it i, iy, | 6, d ;
=| m,g &% +ma—m,g, —® %+ m g e rmg, —e™ e L gim g, — &% |
h h v b&E b b .

) . d | i
The centre of mass can be made stationary at the position g = {m(_d + 2, —b—e"”*’ ]8’9"
if the remaining two terms in the brackets can be made zero. Let the vector g,” represent the position of the
countermass m,,” to be added to the input link and vector g’ represent the position of the countermass m_’ to
be added to the output link to have complete force balancing.
Thus the equations may be written as
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i ad ; o PR
m,g.e% + mya—m,g, EE% +m, g, €% =0 (14.18)

: ¢
and m.g.e’ +mg, —ge

+m'g % =0 (14.19)

from which magnitudes and the locations of the countermasses can be obtained,

Example 14.8  The following data relate 1o a
Jour-link mechanism:

@ =55 mm m,=0.045 kg
b=165 mm m,= 013 kg

¢ =80 mm m,=0.05 kg

d= 150 mm

g =28mm  ¢~0°

&= 85 mm #=15°

g, =42 mm ¢=0°
Complete force balancing by adding
countermusses to the input and the output links
is desired. Determine the mass-distance values
and angular position of each counter mass.

Solution We have
magae@a + Hya — M, 8y %ei% + ma’g“’em“! =
0.045 x 0,028 cos 0°+ 0.13 x 0.055 - 0.13 x
0.085 (0.055/0.165) cos 15°+ m g, cos ¢, =0
0.00126+0.007 15-0.00356+m ‘g cos ¢,/ =0
m/g 'cos ¢, = —0.004 853 o)

0.045 x 0.028 sin0°—0.13 x 0.085 (0.055/0.165)
sinl5°+m g sin ¢ =0

00000954 +m /g, sing, =0

m/g ! sin ¢, = 0.000 954 (i1}
Squaring and adding (i) and (i1},

(m,g,’Y = 0.000 024 46
or  m,g.=0004946 kg.m

Dividing (ii) by (i,
tan ¢ = 2000954 _ 4 106
" = 0004853

¢ = 168.9°

- {' . . N ’
i, iy o o =
mg.e +mbg,,-ge +m.g.e < =0

0.05 % 0.042 cos 0° + 0.13 x 0.085 (0.08/0.163)
cos 15°+m/g cos ¢,/ =0
0.0021 +0.005 175+ m/g cos ¢’ =0
m' g/ cos ¢ =—0.007275 (iii)
0.05 x 0.042 sin 0°+ 0.13 x 0.085 (0.08/0.165)
sinl5° +m /g sin g =0
0+0.001 387 +m /g sing.” =0
m g’ sin ¢, =—0.001 387 (iv)
Squaring and adding (iii} and (iv),
{m g.y*=0.000 063 86
or  m/'g/=0.00741 kg.m
Dividing (iv) by (iii),

~001 387
fo 20 = 0.190 65
tan ¢ = 507 275
. =190.8°

Figure 14.13 shows the complete linkage with

the two countermasses added.
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~ 146 BALANCING OF RECIPROCATING MASS

Acceleration of the reciprocating mass of a slider-crank mechanism is given by (refer Eq, 13.12)

Therefore, the force required to accelerate mass m is

mra# cos@ is called the primary accelerating force and mre*

Jorce,

Maximum value of the primary force = nra?

Maximum vaiue of the secondary force =

As r is, usually, much greater
than unity, the secondary force is
small compared with the primary
force and can be safely neglected
for slow-speed engines.

The inertia foree due to primary
accelerating force is shown in
Fig. 14.14{a). In Fig. 14.14(b),
the forces acting on the engine
frame due to this incrtia force are
shown. The force exerted by the
crankshaft on the main bearings
has two components, F.,” and
F,.”. The horizontal force F,*
is an unbalanced shaking force.
The vertical forces ¥,," and F,,*
balance each other, but form an
unbalanced shaking couple. The
magnitude and direction of this
force and couple go on changing
with the rotation of the crank angle
f. The shaking force produces
linear vibration of the frame in
the horizontal direction whereas
the shaking couple produces an
oscillating vibration.

Thus, it is seen that the shaking

205 28
= ray [ c059+L—0L—~)
n
F = mre® [00594-5%]
n
cos 28
= mr o cos 8+ mre' —— (14.20}
n
0520 .
0% = is called the secondary accelerating
n
mre”
n
i - F32 F34
e Frad

mra? cos 8

--------------------- — mre? cos @
o mraFcos 8 w8
e Inertia force Primary
Fiz {Unbalanced) accelarating force
(a)
Fzy
=~ F
Lo o L. —B1--—--
F£’1 0 1 bl
T Fay
{b)
/(J) l A
me®  f ooy Yy Vo e
cos 8 mrwl cos @ 77777 B
Primary force
T
mred  mrePsin @
(c)
‘Fig. 1414
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force F,,” is the only unbalanced force. It may hamper the smooth running of the engine and Thus, effort
is made to balance the same. However, it is not at all possible to balance it completely and only some
modification can be made.

The usual approach of balancing the shaking force is by addition of a rotating countermass at radius
directly opposite the crank which however, provides only a partial balance. This countermass 1s in addition
to the mass used to balance the rotating unbalance due to the mass at the crank pin.

Figure 14.14({c) shows the reciprocating mechunism with a countermass m at the radial distance r. The
horizontal component of the centrifugal force duc to the balancing mass is mra? cos 8 in the line of stroke.
This neutralizes the unbalanced reciprocating force. But the rotating mass also has a component mroy sin 6
perpendicular to the ling of stroke which remains unbalanced. The unbalanced force is zero at the ends of
the stroke when 8= 0° or 180° and maximum at the middle when 8 =90°, The magnitude or the maximum
value of the unbalanced force remains the same, i.¢., equal to mra?. Thus, instead of sliding to and fro on its
mounting, the mechanism tends to jump up and down.

To minimize the effect of the unbalanced force, a compromisc is, usually, made, i.¢., 2/3 of the reciprocating
mass is balanced {or a value between one-half and three-quarters). If ¢ is the fraction of the reciprocating
mass Thus, balanced then

primary force balanced by the mass = cmra? cos €

primary force unbalanced by the mass = {1 — c)emra@’ cos 8

vertical component of centrifugal force which remains unbalanced

= cmre? sin @

In fact, in reciprocating engines, unbalanced forces in the direction of the line of siroke ar¢ more dangerous
than the forces perpendicular to the line of stroke.
Resultant unbalanced force at any instant

= J[(l —cymr@” cos @ +[cmre” sin 01 (14.21)

The resultant unbalanced force is minimum when ¢ = 1/2.

The method just discussed above to balance the disturbing effect of a reciprocating mass is just equivalent
to as if a revolving mass at the crankpin is completely balanced by providing a countermass at the same
radius diametrically opposite the crank. Thus, if m, is the mass at the crankpin and ¢ is the fraction of the
reciprocating mass m to be balanced, the mass at the crankpin may be considered as (c,, + m,) which is to be
completely balanced.

Example 14.9  The following data relate to a (ii} unbalanced force when the crank has
single-cylinder reciprocating turned 45° from the top-dead centre
engine: Solution
| 2 2mX350 5 7 radss
Mass of reciprocating parts = 40 kg
Mass of revolving parts = 30 kg at crank F= 350 =175 min
radius
Speed = 150 rpm (i} Masstobe balanced at the crankpin=cm+m,
Stroke = 350 mm =0.6 x40+ 130
If 60% of the reciprocating parts and alf the =54 kg
revolving parts are to be balanced, determine the mr, = mr

() balance mass required at a radius of 320 mm m, %320 =54 x 175
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m,=29.53 kg

2 o012
(ii) Unbalanced force (at 8= 45°) _ [1=0.6)x40x0.175x(15.7)" cos 45°]

+0.6 x 40 X 0.175 x (15.7) sin 45°]>
=880.7 N

= \/[(l —¢)mroy’ cos 8T + (cmrw’ sin 8)°

" “BALANCING OF LOCOMOTIVES

Locomotives are of two types, coupled and uncoupled. If (wo or more pairs of wheels are coupled together
to increase the adhesive force between the wheeis and the track, it is caited a coupled locomotive. Otherwise,
it is an uncoupled locomeotive.

Locomotives usually have two cylinders. If the cylinders are mounted between the wheels, it is called an
inside cylinder locomotive and if the cylinders are outside the wheels, it is an outside cylinder locomotive,
The cranks of the two cylinders are set at 90° to each other so that the engine can be started easily after
stopping in any position. Balance masses are placed on the wheels in both types.

In coupled locomotives, wheels arc coupled by connecting their crankpins with coupling rods. As the
coupling rod revolves with the crankpin, its proportionate mass can be considered as a revolving mass which
can be completely balanced.

Thus, whereas in uncoupled locomotives, there are four planes for consideration, two of the cylinders and
two of the driving whecls, in coupled locomotives there are six planes, two of cylinders, two of coupling
rods and two of the wheels. The planes which contain the coupling rod masses lic outside the planes that
contain the balance (counter) masses. Also, in case of coupled locomotives, the mass required to balance the
reciprocating parts is distributed among all the wheels which are coupled. This results in a reduced hammer-
blow (refer Sec. 14.8).

Locomotives have become obsolete nowadays.

%%s EFFECTS OF PARTIAL BALANCING IN LOCOMOTIVES

1. Haimmer-blow

Hammer-blow is the maximum vertical unbalanced force caused by the mass provided to balance the
reciprocating masses. Its value is mre’. Thus. it varies as a square of the speed. At high speeds, the force of
the hammer-blow could exceed the static load on the wheels and the wheels can be lifted off the rail when the
direction of the hammer-blow will be vertically upwards.

2. Variation of Tractive Force

A variation in the tractive force (effort) of an engine is caused by the unbalanced portion of the primary force
which acts along the line of stroke of a locomotive engine.
If ¢ is the fraction of the reciprocating mass that is balanced then
unbalanced primary force for cylinder | = (1 — ¢) mre? cos 6
unbalanced primary force for cylinder 2 = (1 — ¢) mrar cos (90° + &)
= (| - ¢) mrer sin &
Total unbalanced primary force or the variation in the tractive force
==(1 — ¢} mra? (cos 6 - sin )
This is maximum when (cos 8- sin 6) is maximum,
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d .
or when =0 (cos @--sin @) =0
or —sinf#-cos =0
or sinf@ =-—<cos @
or tan 8 = -1
or 8 =135°0or 315°
When 8 =135

maximum variation in tractive force
= (1 - c)mrar (cos 135° —sin 135°)

1 1
=(1-omre? | = -
(1= [Jz JE)
= 2 (1 - Oymre?
When 8=315°
Maximum variation in tractive force
=(1 - ¢)mra? (cos 315° —sin 315°)

1 1
= (1 - cymrerF [—+——~)
"R
=2 (1 — O)ymra?
Thus, maximum variation
= +J2 (1 - Omre? (14.22)
3. Swaying Couple
Unbalanced primary forces along the lines of stroke are separated by a {1 - &) mrw?cos 9
distance / apart and Thus, constitute a couple (Fig. 14.15). This tends T >
to make the leading wheels sway from side to side. W2 T
Swaying couple = moments of forces about the engine centre line —1— i
= [(1 - ¢) mre”* cos e]% —[(1- ) mres® cos (90° + 9)}% 2 l

{(1-9 mr;ﬁcos {90° + &)

3 : !
=(1 - ¢) mrar (cos 8+ 5in §) 3

This is maximum when (cos 8+ sin #) is maximum.

i.e., when % (cos@+sin8)=0

or —sin #+ cos =0

or sin 8=cos @

or tan 8=1

or 0=45" or 225°

1
When = 45°, maximum swaying couple = 7_5 (1- ) mre*l

1
When 8= 225°, maximum swaying couple = ——ﬁ (1 —cymro’l

. 1
Thus, maximum swaying couple = ijf (i - c)mrm21 (14.23)
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Example 14.10 The Jollowing data refer 1o
. a  two-cylinder uncoupled

locomotive:
Rotating mass per cylinder =280 kg
Reciprocating mass per cylinder = 300 kg
Distance between wheels = 1400 mm

Distance between cylinder centres = 600 mm

Diameter of treads of driving wheels = 1800 mm
= 300 mm}

Crank radius
Radius of centre of balance mass = 620 mm

Locomotive speed - = 50 km/hr
Angle between cylinder cranks = 9
Dead load on.each whee! = 3.5 tonne
Determine the

(D) balancing mass required in the Dlanes of
driving wheels if whole of the revolving
and two-third of the reciprocating mass
are fo be balanced

(i} swaying couple

(iii) variation in the tractive force
(v} maximum and minimum pressure on the
rails -

(v) maximum speed of locomotive without
lifting the wheels from the rails

Solution Total mass to be balanced = m,+cm
=280+ % X 300
=480 kg

(i) Take 1 as the reference plane and angle 8,
=0°(Fig.14.16). Writingthe couple equations.
#3855 €08 B, + 3oL ¢08 0y + Myl cos 8,=0

or 480 x 300 x 400 cos 0° + 480 x 300 x 1000
cos 90° + m, X 620 x 1400 cos 8, = 0

Or s, cos By = —66.36 0}

and myr,f, sin 6, + myr,/; sin 6, +rryd, sin 8,=0

or 480 x 300 x 400 sin 0° + 480 x 300 x 1000
sin 90° + m, x 620 x 1400 sin 6, = ¢

or

my sin @, = -165.9 (ii)
Squaringandadding(i)and{ii).m4: 78.7kg
Dividing (ii) by (i), tan 6, = 2169 .
’ —66.36
t, = 248.2°

Taking 4 as the reference plane and writing
the couple cquations,
MaWaly C08 Oy + myrsfs cos O, +myr l, cos 8,=0
480 x 300 x 1000 cos 0° + 480 x 300 x 400
€08 90° + ) x 620 x 1400 sin §, = {)

or

m| sin 8, = -165.9 (iii)
Simtlarly, m, sin 8, = -66.36 (iv)
From (iii) and (iv), m, = 178.7 kg=m,

—66,
tan @ = 36 =04o0r 6 =201.8°
-165.9

The treatment shows that the magnitude of m,
could have directly been written equat to my.

. _ S0x1000x1000 1
(ii} w= 060 X 1300 =15.43 rad/s

2

1
Swaying couple = £+ — (I - ) mrw?7

Nz
I

2
=t——=1-={x300x0.3x(15.43)2 x 0.6
JE( 3] )

=230303 N.m

(ifi) Varation in tractive force = i\ﬁ(l - C)mire?
= iﬁ(l —%] X 300 x 0.3 % (15.43)2
=10J00N

¢iv} Balance mass for reciprocating parts only
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2 % 300 The balanced mass required for the reciprocating
=~ 1787 x 3 =74.46 kg parts is equally divided between each pair of
coupled wheels. Determine the
Hammer-blow = mre’ (i) magnitude and position of ‘the balance
= 74,46 X 0.62 x (15.43)? mass required to balance two-third of
=1099] N reciprocating and whole of the revolving
Dead load = 3.5 x 1000 x 9.81 =34 335 N parts '
Maximum pressure on rails (ii) hammer-blow and the maximum variation
=34335+ 10991 =45326 N of tractive force when the locomotive
Minimum pressure on rails . speed is 80 kam/h

=64335-1099t =23 344N
{v) Maximum speed of the locomotive without
lifting the wheels from the rails will be when

Sotution Leading wheels Balance mass on each
leading wheel

the dead load becomes equal to the hammer- =m, + % cm
blow.
i.c.. 74.46 X 0.62 x67 = 34 335 , 260+l(3><315]
or @=27.27rad/s
Velocity of wheels = 365 kg
= @r = (2—;_2—; v @] /s Taking the plane 2 as the reference plane and
L Z 8,=0° [refer Fig.14.17]
18 60x60 _ m, = m, = 130 kg; my = my=365kg
=|2727x—x m/h e = =g = e —
( 3 1000 ) ro=r =024 m m=r=0755m;n=r;=03m
= 88.36 km¢h L=-02m5=05m;l,=1.1m;f=1.6m;/;=1.8 m
myrdy = 130 X 0.24 X (<0.2) = —6.24
Example 14.11 The jfollowing data refer maryly = 365 X 0.3 X 0.5 = 54.75
fo a four-coupled wheel myrids =365 X 03 % 11 = 120.45
locomotive with two inside
cvlinders:
Pitch of cylinders = 600 mm 27 5
Reciprocating mass/cylinder = 315kg
Revolving mass/cylinder = 260 kg ¥ 5
Distance between driving wheels = 1.6m 90°
Distance between couplingrods = 2m 4
. Diameter of driving wheels = 1.8&m 2000 77
Revolving parts for each 600
coupling rod crank = 130kg 1600 L
Engine crank radius = 300 mm 3
Coupling rod crank radius = 240 mm
Distance of centre of balance
mass in planes of Driving L2RP)
wheels from axle centre = 750 mm - 1
Angle between engine cranks = 90° (mm)

Angle between coupling rod
crank with adjacent engine crank

i

18¢° i@ig 14.1}



msrsis = ms X 0.75 X 1.6 = 1.2 ms
{(—6.24c0s180° + 54.75¢cos 0°

+120.45 cos 90° + 56.16 cos 270°)°

Theory of Machines

—|II2

1.2mg = . .
+(~6.245in 180° + 54.75sin 0° + 120.45
$in 90° + 56.16 sin 270°)°
= [(60.99) + (64.29)?] 2
= 88.62
ms = 7385 kg
tan 8, = "6433 = 1.054 0r §, = 226.5°

From symmeiry of the system, m, = m, 73.85 kg

_60'92 = 0,949 or 6, = 223.5°

andtan @, =

Trailing Wheels The arrangement remains the same
except that only half of the required reciprocating
masses have to be balanced at the cranks.

1{2
m, = n, z;(-_;—x?}IS):lUS kg

ie.,

Then,  myryl;= 105 %03 x 0.5 = 15.75
(~6.24cos180°+15.75cos0° e
+34.65 cos 90° + 56.16 cos 270°)

7|+ (=6.245in 180° +15.75 5in 0° + 34.65
5in 90° + 56.16 sin 270°)°

= [(21.99) + (-21.51)?]}?
=30.76

349 SECONDARY BALANCING

ms = 25.63 kg
R
or B;=135.4°
By symmetry, m, = m; =25.63 kg
and tan 8, = ;zizi =-1.022 or 8, = 314.4°

(i)} Hammer—blow = mro
where m is the balance mass for reciprocating
parts only and neglecting m, and m, in the
above calculations.
Thus, myr |, =mgrg, =0

| 2m. | (15:75cos 0° +34.65 cos 90°)’ "
T T +(15.755in 0° + 34.65 5in 90°)

= [(15.75)* + (34.65)%] 2

- 38.06

m;=31.75kg

801000 ¥ o3 39
60%60  1.9/2

Hammer-blow = 31.72 x 0.75 x (23.39¥= 13 015N
Maximum variation of tractive force

= +2(1 - O)mro®
= iJE(l -%} %315 % 0.3%(23.39)°

=+ 24 372N

It was stated earlier that the secondary acceleration force is defined as

secondary force = mre

3 COR 28

(14.24)

n
Its frequency is twice that of the primary force and the magnitude 1/n times the magnitude of the primary
force.

> €05 28

The expression can also be written as mv (2@)”




Balancing 497

Now, consider two cranks ol an engine m
(Fig. 14.18). Onc actual one and the other @ 20
imaginary, with the following specifications: " m
Actual Imaginary d [mr(2w)%4n) cos 26
Angular velocity ] 2w 8  mro?cos 20 ran 28 = [mra®n] cos 26
—_— —
Length of crank ¥ I Primary force Secondary force
4n
Mass at the crank pin  m m Primary crank Secondary crank

Thus, when the actual crank has turned
through an angle & = o, the imaginary crank
would have turned an angle of 28= 2ax

Fig. 14.18,

. . . . . 2wy
Centrifugal force induced in the imaginary crank = mr{2w)”
"
- o mr(2e)°
Component of this force along line of stroke = ——=—c05 24
Ll

Thus, the effect of the secondary force 1s cquivalent to an imaginary crank of length +/4# rotating at double
the angular velocity, i.e., twice of the engine speed.

The imaginary crank coincides with the actual at inner top-dead centre. At other times, it makes an angle
with the line of stroke equal to twice that of the engine crank.

The secondary couple about a reference plane is given by the multiplication of the secondary force with
the distance { of the plane from the reference plane.

Complete Balancing of Reciprocating Parts

From the foregoing discussion, it is concluded that for complete balancing of the reciprocating parts, the
following conditions must be fulfilled:

1. Primary forces must balance, i.e., primary force polygon is enclosed.

2. Primary couples must balance, i.e., primary couple polygon is enclosed.

3. Secondary forces must halance, i.e., secondary forces polygon is enclosed.

4. Secondary couples must balance, i.e., secondary couple polygon is enclosed.

Usually, it is not possible to satisty all the above conditions fuily for a muiticylinder enginc. Mostly some

unbalanced force ar couple would exist in the reciprocating engines.

1410 BALANCING OF INLINE ENGINES

If a reciprocating mass is transferred to the crankpin,
the axial compenent parallel to the cylinder axis of
the resulting centrifugal force represents the primary
unbalanced force.

Consider a shaft (Fig. 14.19) consisting of three equal
cranks unsymmetrically spaced. The crankpins carry
equivalents of three unequal reciprocating masses. Then

) e _
Primary force = Ymre? cos @ (14.25) __maycos & Line of stroke

Primary couple = mrar { cos 8 (14.26)
‘Fig, 1419
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2w)? @’
Secondary force = X mr n] cos 28 = 3 mr — cos 28 (14.27)
"
. (2w)* w
Secondary couple = 3. m» Icos28 = ¥ mr—{cos 20 (14.28)
H 14

In order to solve the above equations graphically, first draw the Ymr cos polygon (@’ is common to
all forces). Then the axial component of the resultant force (F, cos8) multiplied by & provides the primary
unbalanced force on the system at that moment. This unbalanced force is zero when 8= 90° and a maximum
when 6= 0°,

In case the force polygon encloses, the resultant as wall as the axial component will always be zero and
Thas, the system will be in primary balance. Then 2F, =0and 2F, =0

To find the secondary unbalance force, first find the positions of the imaginary secondary cranks. Then
transter the reciprocating masses and multiply the same by (2@)*#4# or &*/n to get the secondary force.

In the same way primary and secondary couple (#2rf) polygons can be drawn for primary and secondary
couples.

In the following paragraphs. some roulti-crank arrangements have been examined.

1. In-line Two-cylinder Engine

Consider a two-cylinder engine (Fig. 14.20). cranks of which are 180° apart and have equal reciprocating
masses. Taking a plane through the centre line as the reference plane,
Primary force = mre? [cos 0+ cos (180° + #)] = 0

T I‘-‘ I o
Primary couple = mra” ]:E cosf+ (— EJ cos (180° + B)} = mrw-lcosf

o mFw?
Reteren lary mrwz\\m
___heferenceplane (@) ':9

2{cos e
e Fo}-—-m- _ mrw
Force Couple

mra2i2 (2)

mrai2 (1)

L)

20

mrw?in
{1

mraFin

(2)

2mrw?in

Force Couple

Secondary cranks

‘Fig. 1420
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Maximum values are mra?! at 8= 0° and 180¢

4

2
. [ id0 " i
Secondary force = [cos 28 + cos {360° + 28] = 2 — cos 28
7 "
] 2

T
Maximum values are ~——when 26 = 0°. 180°, 360° and 540°
n

or g=0°,90°, 180°, and 270°

2
W |/ {1

Secondary couple = o [E cos 28 + \ - ;}cos (360° + 29)} =0
] .2

Remember that to find the primary forces and couples analytically, the positions of the cranks have to be
taken in terms of 8. As it is a rotating system, the maximum valucs or magnitudes of these forces and couples
vary instant to instant and are equal to the values as given by the cquivalent rotating masses at the crank pin. If
a particular position of the crankshaft is considered, the above expressions may not give the maximum value.
For example, the maximum value of primary couple in this case is found to be mraer ./, This is the value which
is obtained when the crank positions are O and 180". However, if the crank positions are assumed at 90°
and 270°, the values obtained are zero. Thus, in case any particular pesition of the crankshaft is considered,
then both x- and y-components of the force and couple can be taken 1o find the maximum values, e.g,, if the
positions of the cranks are considered at 1209 and 300°, the primary couple can be obtained as below:

2 1
x-c()mponent = mirr” {% cos120° + [— é ] cos( 18" + 120° }:| = - j)- mrmzf

T l;
y-component = mra” [E sin120° + (— %J sin{180°+ 120" )] = % mre’ !

| Lmres®t LB, Y] = mro
Primary couple = —Emrw | 5 mre = mre

The graphical solution has also been shown in Fig. 14.20 which is self-explanatory.

2. In-line Four-cylinder Four-stroke Engine

Such an engine has two outer as well as inner
cranks (throws) in linc. The inner throws are
at 180° to the outer throws. Thus the angular
positions for the cranks arc 8 for the first,
{180° ~ 8) for the second, (180° + &) for the
third, and @ for the fourth (Fig. 14.21).

Primary cranks Secondary cranks

Crankshaft of a four-cylinder engine "Fig, 14.21?
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For convenience. choose a plane passing through the middle bearing about which the arrangement is
symmetrical as the reference planc.

Primary forcc

= mrey [cos @+ cos (180° + 8) + cos (180° + @)+ cos 6] =0

Primary couple

= mre’ {-32—!c059+%c05(1803+9)+(— %]005(180°+8)+(—%Jc058]

=)
Secondary force
= [cos 28+ cos (360° = 28) + cos (360° + 26) + cos 26
H
= Amray” cos 20
H
. dmrey”
Maximum value = at 28=0°, 180°, 360° and 540° or &= 0°, 90°, 180° and 270°
H
Secondary couple
_ e ) X 3 cos 28 + LI cos (360° + 28} + {— ! ]cos(360° + 28+ (*X]cos 20
" 2 2 2
=0

Graphical solution has been shown in Fig. 14.21. Thus this engine is not balanced in secondary forces.

3. Six-cylinder Four-stroke Engine

Only a graphical solution is being given for simplicity. In 2 four-stroke engine, the cycle is completed in two
revolutions of the crank and the cranks are 120° apart.
Crank positions for different cylinders for the firing order 142635 for clockwise rotation of the crankshaft are
For first, 8=0° For fourth, 8= 120° !

For second, 6 =240° For fifth. 8= 24(° 31 51

For third, = 120°  For sixth, 8= 0°¢ 407 - — 120°

Assuming s and + equal for all cylinders F) .12'*
and taking a vertical plane passing through V1900 2403 . —
the middle of the shaft as the reference plane, C?a - ﬁ:;
the force and the couple polygons are drawn —fAm L
as shown in Fig, 14.22, ,:29 6 240 T

Since all the force and couple polygons ' 200
close. it is an inherently balanced engine for 240
primary and secondary forces and couples. ﬁ- \ /

j 5 Couple polygon Couple polygon
!
anary cranks Secondary cranks
(@) ) (o) (d)
iFig. 14.2%

Crankshaft of a six-cylinder engine



Example 14.12 4 four-cylinder. oil engine
is in  complete primary
balance. The arrangement of
the reciprocating masses in
different planes is as shown in Fig.14.23(a).
The stroke of each piston is 2r mm. Determine
the reciprocating mass of the cylinder 2 and the

‘relative crank positions.
168~ t
0(.'

2g2°

1237

(b}

! L N T r
mrh 1
- —= mz,r\
fom T TR } Myt
S
Mar

Couple palygon
ftriangle) Force polygon

CH (@)

Solution Crank length =2¢/2 =r
Take 2 as the reference plane and &, = 0°
med, =380 rx(-1.3)=-494r mF,=380r
Mypad =590 r x 2.8 = i652r mary,=590r
gl =480 F x (2.8 + 1.3) = 1968r my,=480r
—494 rcos 8, + 1652 rcos 0° + 1968 rcos 6, =0

or 494 cos 8, =1652 + 1968 cos G, (i)
and —494rsind,+1652#5in0°+ 1668 rsin 8,=0
or 494 sin 6, = |968 sin 6, {(ii)

Squaring and adding (i) and (ii),
(494)? = (1652 + 1968 cos 8,)? + (1968 sin 8,)-
= (1652)" + (1968)* cos® B, + 2 x 1652

x 1968 cos 8, + (1968)" sin” 6,
= (1652)° + (1968)* + 2 x 1652 = 1968 cos 6,
cos 8, =-0.978

Balancing 50@5

or 8, =167.9°or 192.1°
Choosing one value, say 0,= 167.9°
19685in167.9°
1652 +1968 cos 167.9°
441253
-272.28
=-1.515
6, = 123.4°
Writing the force equation, (r is common)},
380G cos 123.4° + m, cos B, + 590 cos 0° + 480
cos 167.9°=0
of iy cos B, =885 (it}
and 380 sin 123.4° + m1, sin 6, + 590 sin 0° +
480 sin 167.9° =0

Dividing(ii}by (i), 1an 8,=

or  ansin G =-4179 (iv)
Squaring and adding (iii) and (iv), m, = 427.1 kg

o . —417.9

Dividing (i11) by (iv), tan 8, = 7885

or  0,=282°

Figure 14,23(b)showstherelative crank positions.

Had we chosen 8, = 192.1°, a different set of
values of m,. 8, and &, would have come.

To soive the problem graphically, draw the
couple polygon (triangle) as shown in Fig. 14.23(c)
from the three known values. This provides the
relative direction of the masses m, m;, and m,.
Now, complete the force polygon [Fig. 14.23(d) and
obtain the magnitude and direction of #15. The results
obtained are 8, = 168°, 8, = 123°, 8, = 282°.

Also, myr=427r or m, =427 kg

Note that the couple triangle can be drawn in
more than one way. However, only two sets of
answers are obtained. Also, mr,/, is negative and,
therefore, its direction is reversed in the diagram.

=472

Example 14.13  The arrangement of the cranks
of a 4-crank symmetrical
engine is shown in Fig.14.24.
The reciprocating masses at
cranks 1 and 4 are each equal to m, and of the
cranks 2 and 3 are each equal to my. Show that
the arrangement is balanced for primary forces
and couples and for secondary forces if
m _cosf /  tan

I
\ Jcosocos f=—
m, cosg y tana 2
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Determine also the magnitude of the out-of
balance secondary couple if the system rotates
at wrad/s.

(360° — @)
______ ——
, ERGLEY
a
f ________ 3
h
:ﬂz\ _____ -
I 180°
¥
2
g\
h
o
/ 1
thig. 1424

Solution As particular positions of the cranks
are being considered, horizontal and vertical
components of primary and secondary forces and
couples must be taken.
(i) Primary Forces
my cos o + my cos{180° + )

+m, cos (180° — B)

+ry cos (180° — &)

EF{J}I =P’G)2

=2r @ [m, cos & - m, cos f]

SF 5| My Sine + my sin (180°+ B} + iy
, = F
™ =7 5in (180° - B) + my sin (360° — @)

=0

For primary balance of forces, ¥F,, must be
Zero,
i.e., mcos @—m,cos f=0
m  cosf
m; COS¢X
fii)  Primary  Couples Take reference plane
at the middle of shaft about which the system is
symmetrical.

ar

5 [ cos (180° + B) + m, (1)
cos (180° — By + my (1)
cos (360° - ar)

=r @ [-ml; cos @+ myly cos By,
cos B+ m,i| cos a
=1{
my(=E)ysing + my(—4y)
| sin (180°+ B) + my (=1,)
e PO
sin {180° = By + m (—4,)
sin {360° — o)

Z C‘f’h = rit

c

=2r @ [myly sin B—m\]| sin &
Thus for balancing of primary couples,
maly sin B md, sin =0
L _mysinB  cosasinB  tanf
L " cosBsina

or
fan o

L mysina
(iii) Secondary Forces
L | my cos 200+ my cos2(180°+ 1)
3 Fy, = 222 | ¢ my cos 2(180° - §)
"y cos 2(360° = o)
o {m cos 200 + m, cos 23+ m,
cos 28+ m cos 2]

2’
= L-—-{m, cos 20t + 11, cos 23]
H

S reo® | My sin 2e + m, sin 2(180°+ B) + m,
"7 n |sin2(180°— B)+ m; sin 2 (360° — o)
re® : : . :
= [r21) 8in 20¢ + my sin 28 — m, sin 28 — m, sin 2]
H
-0



For the balancing of secondary forces,
m, c08 2¢0+ m, cos 28=10

)

or —costcos2f=0
i,
cos . 2

or (Zcosf -1} +(2cos - 1)=0
cos g

or 2cosfBeos? o =cosfB+2cos?Peoso-cosa =0
or 2cos fBcosa(cosotcos F—{cosatcosf) =0
or (2cosa+cos B (2cos fecosa-1)=10
Ascos a+cos =0,

2¢os feosg-1=0

1
or cos ocos =3

(iv) Secondary Couples
m (—1ycos 20 + my(—ia}
sC, = "_“ﬁ c0s 2(180° + B) + my (1)
’ n | cos2(180° - B) +m{h)
cos 2{360° —a)

2
= EE"')—[—mp‘, cos 20 — mayly cos 28+ myi,
cos 28 + my/, cos 2a]

=0
my{~1)sin 20+ my (—h) |
sCo- ro” | sin2(180° + B)+ m? (L)
Y |sin2(180° - B) +m ()
sin 2 (360° — &t)
_ 2r@?

[—myd, sin 20 — my !y sin 28]
Out of balance secondary couple

_ 2rw?

[y, sin 2 + myl, sin 28]

Balancing

Graphical Solution
From the polygon of primary forces (Fig. 14.25),
mcos o= mqr cos
or - ML_ o8B
M, COSU
From the polygon of primary couples,
myl, sin B=m i sin o
fi, _mysinB cosasinfl tanf
or T = —— = — =
I, msinoe cosfsin@  tano
From the polygon of secondary forces,
my cos 2a=—m, cos 23
of  mycos2a+m,cos2fi=0
Simplifying as in (iil) of analytical seolution
above ,

cos eos B= 7

2

From the polygon of secondary couples,

Resultant mrf = m rf sin 20+ m,r sin (180° - 25)
+ myrisin (180° — 28) + myrl sin 200

Force polygon  Couple palygon

{80° 180°\Mar
y-2B2p

{b} Secondary cranks

Force polygon

Fig. 14.2§

Couple polygen
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or out of balance secondary couple
i

2ra”

[y sin 200 + m,/, sin 28]

Example 14.14 Eachcrank andthe connecting
rod of a four-crank in-line
engine arve 200 mm and 800
mm respectively. The outer
cranks are set at 120° to each other and each
has a reciprocating mass of 200 kg. The spacing
between adjacent planes of cranks are 400 mm,
600 mm and 500 mm. If the engine is in complete
primary balance, determine the reciprocating
masses of the inner cranks and their relative
angular positions. Also find the secondary
unbalanced force if the engine speed is 210

rpm.

Solution
2rx 210
w= iéo—— = 22 rad/s
n=800/200=4

Figure 14.26 represents the relative position of
the cylinders and the cranks.

Taking 2 as the reference plane,

primary couples about the RF,

myrd =200%0.2%04=16

Maryly =0

myrsly = nmy x 0.2 x (—0.6) = 0.12 m,
Mgty =200% 02 x (-1.1)=- 44

The couple polygon is drawn in Fig. 14.26.

myryfy of the crank 3 from the diagram = 53.7 at
135¢

&bl =my X 0.12 = 53.7 or my = 448 kg

As its dircction is to be negative, its direction is
(135°+ 180 or 315"

Primary force (»m») along cach of outer cranks =
200 x0.2=40

Primary force (mr)along crank 3= 448 x0.2=89.6

The force polygon is drawn in Fig. 14.26.

myry of crank 2 from the diagram = 87.6 at 161 .4¢

comry =y x0.2=87.6 orm, =438 kg

Its angular position is 161.4°.

Figure 14.26(b) represents the relative position
of the ¢ylinders and the cranks.

From secondary unbalanced force polygon,

mr =198

Maximum unbalanced force

2 222
- 198xw—=198><—4—=23 958 N
M

1 1
161.;" \\ 4
INN 135

GCouple polygon

400

Force polygen

{b} Secondary cranks

Fig, 14.26,

Example 14.15 The successive cranks of a

_ Jve-cylinder in-line engine

are at 144° apart. The spacing
between cylinder centre lines

is 400 mm. The lengths of the crank and the
connecting rod are 100 mm and 450 mm
respectively and the reciprocating mass for
each cylinder is 20 kg. The engine speed is 630
rpm. Determine the maximum vaiues of the
primary and secondary forces and couples and

the position of the central crank at which these
occur:



Solution
27 % 630
o=—=""""
60
Figure 14.27(a) represents the relative position of
the cylinders and the cranks.
Primary force (mr) along each crank =20% 0.1 =2
The primary force polygon is a closed pelygon
[Fig. 14.27(b}}, therefore, no unbalanced primary
force.

= 66 rad’s

Primary couples about the mid-plane,
mrd =2x08=16
myroly =2x 0.4 =108

1

o
[\M]

4 3

4
5
Mo 126°
(d) Secondary cranks {f} Force palygon

IFig. 1427

Balancing 508

myryly =0

mypyd,=—-0.8

mgrsls = -1.0

The couple polygon is drawn in Fig. 14.27(c).
Unbatanced mrf on measurement = 2.1

The unbalanced primary couple = 2.1 X &#
=21x66°=9148N

The maximum value of the secondary couple will
oceur when it coincides with the line of stroke, ie.,
when the crankshaft rotates through 18° and 198°
clockwise. As initial position of mid-crank 3 18 288°,
its positions for maximum primary couple will be
(288°- 18°) and (288°— 198°) or 270° and 90°.

The positions of the cranks for secondary forces
and couples will as shown in Fig. 14.27(d).

Secondary force {(mr) along each crank
=20x0.1=2

The force polygon is a closed polygon [Fig.
14.27(e}]., therefore. no unbalanced secondary force.

Secondary couples about the mid-plane, myrd.
maryly ... are the same as above for primary
couples.

The couple polygon is shown in Fig. 14.27(1). It
does not close.

Unbalanced mrf on measurement = 3.41

The unbalanced couple

34X 34— —x 6
7 450/100
= 3301 Nom

The maximum value of the secondary couple will
occur when it coincide with the line of stroke, i.e.,
when the crankshatt rotates through 126° and 306°
clockwisc. As initial position of mid-crank 3 15 216°,
its positions for maximum secondary couple will
be (2169 - 126, (216°— 306°) or 90° and —90° or
90° and 270°. However, since the secondary crank
positions are taken at double the angles, the original
crank will rotate through 45° and 135°. As the crank
rotates through a fuil revolution, the maximum
sccondary couple will also occur at 225° and 315°.
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Example 14.16 Eachcrankandthe connecting
rod of a siv-cylinder four
stroke  in-line  engine are
60 mm and 240 mm
respectively. The pitch distances between
the cylinder centre lines are 80 mm, 80 mm,
100 mm, 80 mm and 80 mm respectively. The
reciprocating mass of each cvilinder is 1.4 kg.
The engine speed is 1000 rpm. Determine the
out-of-balance primary and secondary forces
and couples on the engine if the firing order
be 142635. Take a plane midway between the
cylinders 3 and 4 as the reference Plane.

Solption  Figure 14.28(a) represents the relative
position of the cylinders and the cranks for the
firing order 142635 for clockwise rotation of the
crankshaft. As the engine is a four-stroke engine,
firing takes place oncc in two revolutions of the
crank and the angle between the cranks is 120°.

Primary cranks Secondary cranks

(a) (b)

Fig. 14.28

Primary force (mr)alongeach crank = | 4 x 60=84

The force polygon can exactly be drawn in the
same manner as shown in Fig. 14.22(b). It is 1 closed
polygon, therefore, no unbalanced primary force.

Primary couples about the mid-plane,
nirl =84 x 210 =17 640
naraf; =84 % 130 =10 920
niarydy = 84 % 50 = 4200
mrydy = =84 % 50 = 4200
rigrsls = —84 % 130 =-10 920
Merehe = -84 x 210 = ~17 640

The couple polygon is again exactly similar to
as shown in Fig. 14,22(b). It is a closed polygon,
therefore. no unbalanced primary couple.

The secondary cranks position is shown in Fig.
14.28(b).

secondary force (mr) along each crank = 1.4 x
60 = 84

The force polygon can exactly be drawn in the
same manner as shown in Fig, 14.22(d). It is a
closed polygon, therefore. no unbalanced secondary
force.

Secondary couples about the mid-plane,

e ety L are the same as above for
primary couples.

The couple polygon is again exactly similar to
as shown i Fig. 14.22(d). 1t is a closed polygon,
therefore, no unbalanced secondary couple.

Example 14.17 The stroke of each piston of
a six-cylinder two-stroke in-
line engine is 320 mm and
the connecting rod is 800 mm
long. The cylinder centre lines are spaced at
300 mm. The cranks ave ut 6(° aparf and the
Jfiring order is [45236. The reciprocating mass
per cvlinder is 100 kg and the rotating parts are
30 kg per crank. Determine the out-of-balance
Jorces and couples about the mid plane if the
engine rotutes at 200) rpm.

Selution  Figure 14.29(a) represents the relative
position ol the cylinders and the cranks for the
firing order 145236 for clockwise 1otation of the
crankshafi,



(b) Force polygon

{d} Gouple polygon
{c) Couple polygon

ig) Couple polygon

{e} Secondary cranks

TFig. 14.24]

Total mass at the crank pin =100 + 50 = 150 kg
Primaryforce(mr)alongeachcrank=150x0.16=24

Balancing 5(@5;

The force polygon [Fig. 14.29(b}] is a closed
pelygon. therefore, no unbalanced primary force.

Primary coupies about the mid-plane,

mnl=24%x125=30

myrid, =24 x0L75 =18

miryd, =24 x025=06

Matyly =—6

mersls =18

mFele =30

The couple polygon [Fig. 14.2%(c)] is again a
closed polygon, therefore, no unbalanced primary
couple. As it is not necessary to add the vectors in
order, the couple polygon can alsc be drawn as in
Fig. 14.29(d).

The positions of the cranks for secondary forces
andcouples willas shownin Fig. 14.29(e). Secondary
force (mr) along each crank = 100 x 0.16 = 16

{The rotating masses do not affect the secondary
forces as they are only due to second harmonics of
the piston acceleration.)

The force polygon is a closed polygon [Fig,
14.29(f)], therefore, no unbalanced secondary force.

Secondary couples about the mid-plane,

mrh =16x125=20

il =16 x0.75 =12

iy =16 x025=4

myrady =4
Mgrsle =12
ntrele =—20

The couple polygoen is shown in Fig. 14,29(g). It
does not close.

Unbalanced m#f on measurement = 55.43.
2

0
The unbalanced couple = 55.43 x —
n

1 S
= 55.43 x -x (M = 4863 N.m
5 60

Example 14.18 The cranks of a four-cylinder
marine oil engine are
arvanged at angular intervals
af 9°. The engine speed ix
70 rpm and the reciprocating mass per cylinder
is 800 kg. The inner cranks are [ m apart and are
symmetrically arranged between the outer cranks
whichare 2.6 m apart. Eachcrankis 400 mmlong.
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Determine the firing order of the cylinders for
the best balance of reciprocating masses and
also the magnitude of the unbalanced primary
couple for that arrangement.

Solution
m=800kg N=T70rpm
r=04m W= 27 <70 = 7,33 rad/s
60

mrar = 800 x 0.4 x(7.33 =17 195

There are four cranks. They can be used in six
different arrangements as shown i Fig.14.30¢a). It can
be observed that in all the cases, primary forces are
always balanced. Primary in cach case will be as under:

Taking | as the reference plane,

Cpy = mrad J(=hY + (b~ Y

=17195(-1.8) +(0.8-2.6)°

=43 76} Nm
Cpo = Cpy = 43 761 Num, oniy £, and l, are
interchanged.

Cpy = mra (=1 +¢, — 1)

- 17195\/(—2 6)° +(0 8- 1.8)°

H ol

1234 1243 1423 1324 1342 1432
Firing order (a)

1 8{3}

% 180° 80°
T Jese fg .
%‘? T 270°

/
(D
8
LTl '
@y T {»\
A T s
AT s 26 | [+~ }
e (3) (4) 0.8
- ¥ {2 18
l— fﬁ' — l (3) i
® (0) ®
Fig. 14.30

=47 905 N.m
C,5=C,;=47905N.m,/,and [ are interchanged.

(1 )2 +ly -4 )2

= 17195(-0.8)" +(2.6 - 1.8)°
= ]9 448 N.m
= 19448 N.m, {, and /; arc interchanged.
Fims the best arrangement is of 3rd and 4th. The
firing orders are 1423 and 1324 respectively.
Unbalanced couple = 19448 N.m
Graphical solution has also been shown in Fig. 14.30(b).

- 3
Cpy =mre

Example 14.19 The intermediate cranks of

_ a four-cylinder symmetrical
engine, which is in complete

primary balance, are at 90°
to each other and each has a reciprocating
mass of 400 kg. The centre distance between
intermediate cranks is 600 mm and between
extreme cranks, it is 1800 mm. Lengths of the
connecting rods and the cranks are 900 mm and
200 mm respectively. Calculate the masses fixed
to the extreme cranks with their relative angular
positions. Also, find the magnitude of the
secondary forces and couples about the centre
line of the system if the engine speed is 500 rpm.

Sofution Refer Fig.14.31.

[I=09m my =m, =400 kg
243.4° 486.8°
4 {126.8" )
/ 4
g0°
&
2
206.6° A (53,27 )
1 RP) 1
F.3
Primary cranks Secondary cranks
243.4°
Primary
coupie

206. 57
2

3 2
Secondary force  Secondary couple
Fig. 14.33 .
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27 x150
r=02m n=—g%:4.5 = ———— =157 rad’s
The engine is in complete primary balance. Secondary force
Taking | as the reference plane, 1298 (c08 53.2°+ €05 126.8°) + 400 2

2 . e . a2
Myl = 400X 0.2 x 1.2 = 96 _ roo” | (eos 07+ cos 180°)
37373

margly=myx02x 1.8=0.36m, n 1 +1298(sin 33.2° + 5in 126.8°) + 400
(48 cos 0° + 96 cos 90°) {sin 0 +sin 180°)}
0.36m, = 1 900y? 0.2x(15.7)
+ (48 sin 0° + 96 sin 90°)° 2 92X A5 (6in 53.20 + sin 126.8°) x 208
4.5
. 2 2
= \J(48)* +(96) - 52336 N
=107.33 Secondary couple about the centre line
my =298 k 1298 (—0.9.cos 53.2° + 0.9c0s126.8%) T '°
-96
tan 6, = g - D6a=2434° _ 1’ | +400(-0.3¢0 0° + 0.3 cos 180°)°

n | +{298(~0.9sin 53.2° + 0.95in 126.8°)
+400(—0.3 sin 0° + 0.3 5in 180°)}°

By symmetry, m, = 298 kg
—48
and tan 8 = — = 0.5; 8, = 206.6°

-96 _02x(5.7) .
The position of the cranks for secondary forces - 4.5 [298 3 (-0.9 cos 33.2° + 0.9
and couples will be such that the angles are doubled cos 126.8°) x 400 x (—0.6)]
(Fig.14.31). =6155 N.m

1411 BALANCING OF V-ENGINES

In V-engines, a common crank (4 is operated by two connecting 2
rods OB, and OB,. Figure 14.32 shows a symmetrical two cylinder
V-cylinder, the centre lines of which are inclined at an angle « to
the x-axis.
Let 8 be the angle moved by the crank from the x-axis.
Primary force
Primary force of 1 along line of stroke OB, = mror cos (8- )
Primary force of 1 along x-axis = mroy cos (8- &) cos @
Primary force of 2 along line of stroke OB, = mror cos (8 + @)
Primary force of 2 zlong the x-axis = mra?® cos (8 + ) cos o
Total primary force along x-axis
= mray cos afcos (68— a) + cos (6 + )]
= mray cos @ [(cos 8 cos @+ sin @sin @) + {cos 8 cos a - sin 8sin )]
= mray cos a2 cos B cos o
=2mre’ cos® acos 8 (14.29)
Similarly, total primary force along the z-axis
mra? [cos (8- o) sin & — cos (8~ o) sin &)
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= mr@* sin & [(cos B cos o+ sin @sin o) - (cos B cos @ —sin B 5in or)]

= mrar sin & 2 sin Osin @
= 2mre sin” o sin @ (14.30)
Resultant primary force

. . 2
= \/(mer(.c)2 cos” et cos )’ +(2mrw” sin® o sin 8Y’

:2mrm2\/(coszacosﬂ)2 +{sin’ o sin 6)° (14.31)
It will be at an angle 8 with the x-axis, given by
tanﬁ=75inzasme (14.32)
cos” excos '
If 2t = 90°, resultant force

= 2mre’ \[{cos2 45°cos 8)° + (sin” 45°sin 6’)2

= mre? (14.33)

o2 5egi
tan g = S0 A°SIn0 o (14.34)

i
cos” 45%cos 8

i.e., = 8 or it acts along the crank and, therefore, can be conmpletely balanced by a mass at a suitable
radius diametrically opposite to the crank such that me r, = mr.
For a given value of @, the resultant primary force is maximum when

(cos® o cos @) + (sin® ¢rsin g)° is maximum

or (cos® arcos® @+ sin’ arsin® £)is maximum
d 2 . .2
or = {(cos* arcos® B +sin’ asin® @) =0
dg
or —cos .2 cosBsin B +sin* or.2sinfcos @ = 0
or ~cos” @.sin 20 +sin® a.5in 20 =0
or sin 28(sin* o — cos* @) = 0 (14.35)

As ¢ is not zero, therefore, for a given valuc of @, the resultant primary force is maximum when 8 is zero
degree.
Secondary force

mrwz
Secondary force of | along OB, = oS 2(8—-a)

. “t0°
Secondary force of 1 along x-axis = o cos2 (8 —a)coso
"

m!’ﬂ)z

Secondary force of 2 along OB, =

cos2(8+a)

. miray
Secondary force of 2 along x-axis =
H

cos2(B+ o) cosax



Total secondary force along x-axis
2

Balancing

- e cos afcos 2(8 — ) + cos 218 + )]

2

_ e cos e[ (cos 28 cos 2 + sin 28 sin 2a) + (cos 20 cos 2a —sin 285in 2a)]

Lid
2 2
i cos @ cos 20 cos 2o (14.36)
n
Similariy, secondary force along z-axis = 2o sin o sin 28 sin 2 (14.37)
Resultant secondary force "
2mre’ T : >
- e J(cos o cos 26 cos 2a)” + (sin & sin 28 sin 2a)” (14.38)
H
tan B = sin & sin 28 sin 200
cos & cos 28 cos 2o (14.39)
If  2@=90°or a=45%
2mre’
Secondary force = et
n
=3 Y in26 (14.40)
H
tan 3’ = oo, 3’ = 90° (14.41)

This means that the force acts along z-axis and is a harmonic force and special methods are needed to

balance it.

Example 14.20 The cylinder axes of a V-
engine are at right angles to
each other. The weight of each
piston is 2 kg and of each
connecting rod is 2.8 kg The weight of the
rotating parts like crank webs and the crank pin
is 1.8 kg. The connecting rod is 400 mm long
and its centre of mass is 100 mm from the crank-
pin centre. The stroke of the piston is 160 mm.
Show that the engine can be balanced for the
revolving and the primary force by a revolving
countermass. Also, find the magnitude and the
position if its centre of mass from the crankshaft
centre is 100 mm. .

What is the value of the resultant secondary
Joree if the speed is 840 rpm?

Solution

2aN  2Zmx 840
=" =

60 50 = &8 rad/s

400
"7 og0 T
Total mass of rotating parts at the crank pin
g 28X(400-100)
400
=6kg
Enbalanced force due to revoiving mass along
the crank = 6 rar
Total mass of reciprocating parts/cylinder
2.8x100
" 400
=2.7ke
As the angle between the cranks is 90°, ie., 2a
=90°,
. The resultant primary force = mra = 2.7 ra?
(Eq. 14.33)
1t acts along the crank. (Eq. 14.34)
Total unbalanced force along the crank
=(6+2Nraf =87 rot



_. M2 Theory of Machines

1t can easily be balanced by a revolving mass in a
direction eppasite to that of crank,

Countermass m, at a radial distance of 100 mm,

m, > 100 x 6 = 8.7 x (160:2)ar

m,=6.96 kg

The rotating masses do not affect the secondary
forces as they are only due to second harmonics of
the piston acceleration.

Secondary force = V2 z

N
it

sin26 (Bq. 14.40)
H
o 5y 27%0.08x88 .

SN =«
=473.1 sin 26
Maximum value at 8=45"=473.1 N

Example 14.21 The cylinders of a twin V-
engine are set at 6F angle
with both pistons connected
to a single crank rthrough
their respective connecting rods. Eachconnecting
rod is 600 mm long and the crank radius is 120
mm. The total rotating mass is equivalent to 2 kg
al the crank radius and the reciprocating mass
is 1.2 kg per piston. A balance mass is also fitted
opposite to the crank equivalent to 2.2 kg at a
radius of 150 mm. Determine the maximum and
minimum values of the primary and secondary
Jorces due to inertia of the reciprocating and the
rotating masses if the engine speed is 800 rpm.

Solution Refer Fig. 14.33.

m=12kg M=2kg
{ =600 mm =120 mm
m=22kg r’ = 150 mm
N = 800 rpm
z -
B X
7150 ’
m' (mm)

_2aN _ 2mx1050
60 60
= @ =5
80

Primary force

Total primary force along x-axis

= 2mrar cos® @ cos 6 (Eq. 14.29)

Centrifugal force due to rotating mass along x-
axis = Mrar cosf

Centrifugal force due to balancing mass along x-
axis = -m’ rar cosd

Total unbalanced force along x-axis

=2mrar cos® acos 8+ Mror cos 0—ni'r w? cos 8

= @ cos B8(2mr cos® o+ Mr— m'r)

= 110" x cos 8{2x 1.2x 0.12 cos? 30° + 2 x 0,12

~22x%0.15)

= 110° % cos 8(0.216 +0.24 — 0.33)

= 15246 cos BN

Total primary force along z-axis

= 2oy sin® o sin @ (Eq. 14.30)

Centrifugal force due to rotating mass along z-
axis = Mre# sin@

Centrifugal force due to balancing mass along z-
axis = — m’ra¥ sinf

Tetal unbalanced force along z-axis

= 2mre’ sin® o sin 8+ Mr@’ sin@ - m’r o sinf

= oF sin8 (2mr sin? & + Mr — m'r’)

=110 x sin 8(2% 1.2 x 0.12 sin? 30°+ 2 x 0.12
-22x0,15)
[10° x sin 8{0.072 + 0.24 — 0.33)
=-2178sin 8N
Resultant primary force

= 15247 cos? @+ (<217.8)* sin” 6

=110 rad/s

= {2 322 5760s® 6 + 47 437sin’ 6

[2275139cos® @+ 47 437
cos® @+ 47 437sin’ @

= y2 275 139cos’ 6 +47 437

This is maximem when @ is 0° and minimum
when &= 90°.

Maximum primary force

=J2 275139447 437 =1524 N

Minimum primary force
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= f47 437 = 2178 N = 696.961/(0.433 c05 26)° + (0.433sin 26)°

Secondary force This is maximum when 0 is 0 and minimum
The rotating masses do not affect the secondary  when 8= %0°

forcc.s as they are qnly duc to second harmonics of Maximum primary force
the piston acceleration.

Resultant secondary force = 696.96x0.435 =301.8 N
Dinren’ \/Ecos o cos 20 cos 2a)’ (Eq. 14.38) Minimum primary force

= 696.96 x 0.433 = 301.8 N

, _ Thus. the secondary force has the same vatue for
C2x1.2x0.12x110° J(COS 30" cos 28 cos 60° maximum and minimum.

3 +(sin 30" sin 28 sin 60"}

#H +(sin o sin 20sin 20)’

+ 1412 BALANCING OF W, V-8 AND V-12 ENGINES

In W-engines, a common crank OA is operated by three connecting
rods as shown in Fig. 14.34.
Primary force

Primary force of 1 along x-axis= mrer cos (8 - o) cos o

Primary force of 3 along x-axis = mrar cos 6 cos o .
= mraF cos 8 {as o = 0" pd o
- ) T X

Total primary force along x-axis

= mraf cos ofcos (8- @) + cos (8+ @)} + mrar cos 0

=2 mre? cos? o cos @cos @+ mrar cos 8

= mrer cos B(2cos’ o+ 1)

Total primary force along z-axis will be same as in the V-twin
engine because

Primary force of 3 along z-axis = mrer cos 8sin o

=0

F4
4

Resuitant primary force

= \/[mrw2 cos8i(2 cos’ o + ])2]+{21r:wr.r-.fo2 sin’ @ sin8)”

= mrwzJ[cose(Z cos a+1)7 ]+ (2 sin? o sin 8’

1t wilt be at an angle § with the x-axis, given by

2sin” o sin O
tan f =

cos 8{2 cos” o+ 1)

1f o = 60°, resultant force
= mre* J[cos@ (2cos® 60° + 1) ]+ (2sin’® 60° sin 8)°

= 2 mre®

2
. ¥ .
2sin” osind

tan 3 = S
cosB{2cos" x+1)



%4 Theory of Machines

_ 2sin’ 60°arsin @
cos (2 cos® 60° +1)

= tan G

Le, fi = Bor it acts along the crank and, therefore, can be completely balanced by a mass at a suitable
radius diametrically opposite to the crank such that m,r, = my.,
Secondary force

Total secondary force along x-axis

2 2
mr

cos afcos 2 (B — o) +cos 2O + )] +

cos 28

n

2mray \
COS X cos 2o+ | I

A
Total primary force along z-axis will be same as in the V-rwin cngine.
Resultant secondary force

=cos 26

i

-
2

- 0 J[cos 268 (2cosa cos 2o + 1)) + (2 sin & sin 26 sin 2a)?
M

2sinxsin 28 sin 2¢r

tan §° =
cos 28 (2cos e cos 2a + 1)
If o = 60°,
secondary force along x-axis = D o528
2n
o 3mre”
secondary force along z-axis = 5, sin 20

It is not possible to balance these forces simultaneously.

V-8 Engine

A V-8 engine consists of two banks of four cylinders cach. The two banks are inclined to each other in the

shape of a V. The analysis of such an engine will depend upon the arrangement of cylinders in each bank.
Let the cranks of four cylinders on one bank be arranged as shown in Fig. 14.19. In this case there is only

. Amre’
a secondary unbalance force equal to =

H
If the angle between the two banks is 909,

dmre?
secondary force = 2 o

sin 28 along z-axis {Egs 14.40rand 14.41)
"

V-12 Engine

AV-12 engine consists of two banks of six eylinders each,
The two banks are inclined to cach other in the shape
of V and the analysis depends upon the arrangement of
cylinders in each bank.

Let the cranks of six cylinders on one bank arc arranged
a8 shown in Fig. 14.22. In this case there is no unbalanced
force or couple and thus the engine is completely
balanced.

Arrangement of cranks of a V-12 engine
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14.13 BALANCING OF RADIAL ENGINES

A radial engine is a multicylinder
engine in which a!l the connecting
rods are connected to a common
crank. The analysis of forces in such
type of engines is much simplified
by using the method of direct and
reverse cranks. As ail the forces
are in the same plane, no unbalance
couples exist. '

In a reciprocating engine [Fig.

14.35(a)],
Primary force = mra? cos 8
(along ling of stroke)
In the method of direct and
reverse cranks, a force identical
te this force is generated by two
masses in the following way:

e A mass m/2, placed at the
crank pin 4 and rotating
at an angular velocity @ in
the given direction [Fig,
14.35(b)].

A
Y,
_

A (mi2)
©
QA—Primary direct crank OC—Secondary direct crank
OA—-Primary revarse crank OC'—Secondary reverse crank
ib) _ (c)
Fig. 1435

A mass m2, placed at the crank pin of an imaginary crank OA” at the same angular position as the real
crank but in the opposite direction of the line of stroke. This imaginary crank is assumed to rotate at
the same angular velocity @ in the opposite direction to that of the reai crank. Thus, while rotating; the
two masses coincide only on the cylinder centre line. Now, the components of centrifugal force due to
rotating masses along line of stroke are

m
Due to mass at 4 == rar cos @

A

™M
Due to mass at 4" = 2 ref cos @

Thus, total force along line of stroke = mrar cos @ which is equal to the primary force. At any instant,
the components of the centrifugal forces of these two masses normal to the line of stroke will be equal and

opposite.

The crank rotating in the direction of engine rotation is known as the direct crank and the imaginary crank
rotating in the opposite direction is known as the reverse crank.

Now,
. 5> €05 20
Secondary accelerating force = mr@
it
; cos 28

= mr{2mw)
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r 2. .
=m n (2e)" cos 26 (along line of stroke)

]
is force can also be generated by two masses in a similar way as follows:

A mass m/2, placed at the end of direct secondary crank of length +/(4#) at angle 28 and rotating a1 an
angular velocily 2 in the given direction [Fig. 14.35(c)].
A mass m/2, placed at the end of reverse secondary crank of length r/(4r) at angle —2@ rotating at an

angular velecity 2 in the opposite direction. Now, the components of centrifugal force due to rotating
masses along line of stroke are

Due to mass at ¢ = = (2)° cos 20 = o cos 20
2 4n 2n
Due to mass at ¢* = = (20)? cos 20 = 22 cos 28
4n 2n
2
mw ¥ (4i]
Thus total force along line of stroke = 2 "y 4L {(2w) cos 20 = ik cos 28
2 4n n
which is equal to the secondary force.
This methed can also be used to find the forees in F-engines.
Example 14.22 The axes of a three-cvlinder Primary cranks

air compressor are at 12(0°
{o one another and their
connecting rods are coupled

The primary direct and reverse crank positions
are shown in Fig. 14.37 {a) and (b) respectively.

to a single crank. The length of ecoch A1,23 1A

connecting rod is 240 mm and the stroke @
is 160 mm. The reciprocating parts have a r /
mass of 2.4 kg per cviinder. Determine the
primary and secondary forces if the engine runs @ c
8
3
(a)

at 2000 rpm. 20
Solution
r=0.160/2 =008 m [=024m o}
N'=2000 rpm m=24ke “Fig. 1437
n=1r=024/008=3 : ‘
The position of three cylinders is shown in Fig.  For cvlinder |  From the line of stroke as 8 = 0°,

14.36.

the direct and the reverse cranks coincide with the
commaon crank, i.¢., along OA.
For cvlinder 2 From the line of stroke as 8= 120,
the direct crank is 120° clockwise (along OA) and the
reverse crank 120" counter-clockwise (along OC).
For evlinder3  From the line of stroke as 8= 240",
the direct crank is 240° clockwise {along OA) and the
reverse crank 240° counterclockwise (along (O8).
In pusitions of the direct and reverse cranks are
shown in Table 14.1.
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*Table 14.1
Crank Anele of rotation of Position of direct Puosition of reverse
Cvlinder angle (counter- ARl O i - crank on clockwise crank on counter-
. the erank . ] .

clockwise) rotation clockwise roiution

1 o o {14 4

120° 1200 4 o

3 2407 2400 04 0B

Figure 14.37 (b) indicates that the primary
reverse cranks form a balanced system and therefore,
unbalanced primary force is due to dircct cranks
only and is given by

m 2
Maximum primary force = 3 5 Fe¥

27 x 2000 JZ
60

=3x1.2%0.08 x43 865

=12633Norl2.633 kN
Secondary Cranks

The secondary direct and reverse crank positions
are shown in Fig. 14.38(a) and (b) respectively.
Refer Table 14.2.

2.4
=3X-2—X0,08X(

Figure 14.38(a} indicates that the primary direct
cranks form a balanced system and therefore,
unbalanced secondary force is duc to reverse only
cranks and is given by

Maximum secondary force

@’ 24%0.08 (27 x2000Y

=3 =3X *

2 2x3 60

=3x0.032 x 43 865

= 4211 Nord.211 kN

Example 1423 The length of each connecting
rod of a 6(F V-engine is 220
mm and the stroke is 10{t mm.
The mass of the reciprocating
parts is 1.2 kg per cvlinder and the crank speed
is 2400 rpm. Find the values of the primary and
the secondary forces.

Solution
r=0.12=005m I=022m
N = 2400 rpm m=12kg

w=Hr=022005=44

Fig. 14.38° . . . ) -
5 ' The position of the two cylinders is shown in Fig.
14.39,
%Tabie 123
' Crank angle Angle of rotattion of Position of 4”&?’ f’osmrm of reverse
Cylinder . crank on clockwise crank o counter-
(counter-clockwise) the crunk . . )
rotation clockwise rotation
! o o 04 oA
2 120° 240 oC 0A
3 240° 48(¥ or 20V OB 04
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2 % 24(}0)2
60

=3x0.6x0.05x63 165
=3790 N

1.2
=2—x0.05><[
2

Primary force due to reverse cranks = 2 — r?
cos 60° = 3790 x 0.5 = 1895 N 2

Total primary force = 3790 + 1895 = 5685 N
Secondary Cranks

The secondary direct and reverse crank positions
are shown in Fig. 14.41(a) and (b) respectively.
Refer Table t4.4.

Fig. 14.39.

Primary Cranks

The primary direct and reverse crank positions
are shown in Fig. 14.40 (a) and (b) respectively.
Refer Table 14,3,

1,2 A X
(a) . " )
¥y 1448
i Figure 14.41(b} indicates that the secondary
reverse cranks form a balanced system and therefore,
unbalanced secondary force is due to direct cranks
f only and is given by
(a) ®) Thus unbalanced secondary force
_, mre’ 300 2 mre’ cos 30°
Fig. 1440 T e Ty, oS LT 2 "
) " cos 30
Primary foree due to direct cranks = 2 3 ror =3790 x 7
Table 14.3 =746 N
o Cramk angle Angle of rotation of Paosition of drry{:f FPasition of reverse
Cylinder . crank on clockwise crank on counter-
(counter-clockwise} the crank i , »
rotation clockwise rotation
1 30° 3o® A OB
2 330° 3300 OA oC
“Tuble 14.6
. Crank angle Angle of rotation of Pasition of drrec‘:r Position of reverse
Cvlinder , - ' crank an clockwise crank on counter-
- {counter-clockwise) the crank N A ;
rotation clockwise rotation
1 3o 60" OB oc
2 3300 660" or 300¢ 04 oD
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1.2,3,4,5,6, 7
A

Example 14.2¢ A radial aero-engine has

seven  cylinders  equally

spaced with all the connecting

' rods coupled to a common
crank. The crank and each of the connecting
rods are 200 mm and 800 mm respectively.
The reciprocating mass per cylinder is 3 kg.
Determine the magnitude and the angular
position of the balance masses required at
the crank radius for complete primary and
secondary balancing of the engine.

{a) (b}

Solution The position of the seven cylinders is ‘Fig. 1443
shown in Fig. 14.42, ’
Let360°7 =X
This shows that there is primary unbalance due
to direct cranks, '
Secondary Cranks
The secondary dircet and reverse crank positions
are shown in Fig. 14.44 (a) and (b) respectively.
Refer Table 14,6,

1A

Primary Cranks
The primary direct and reverse crank positions

are shown in Fig. 14.43(a) and (b) respectively. (@) (b)
Refer Table 14.5. :Pig. 14.44°
Sfable 14.5
ﬁ§ . '/x
Crank angle o Position of direct Position of reverse
Cvlinder {counter-clockwise} Angle of rotation of crank on clockwise crank on counter-
’ the crank, deg. . . .
deg. rotation clockwise rotation
1 0 0 04 04
2 X X 04 ocC
3 2X 2X 04 OF
4 X 3X 04 oG
5 4X 4X 04 oR
6 SX 5X 04 oD
7 54 6x 04 OF
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Table 14.6
. Crank angie Angle of rotation of Position of d:rer.:r | Position of reverse
Cylinder . - crank on clockwise crank on counter-
feounter-clockwisel the crank . . .

rotation clockwise rotation

1 0 Y 04 4

2 X 2X OG ab

3 2X 4x OF OG

4 3X 6X QF oC

5 4x SXorX oD oF

6 5K 10X or 3.X oc OB

T 2.4 12X or 85X OB OF

There is no unbalance due to sccondary direct or
inverse cranks.

The unbalanced primary force along the crank
can be balanced by a countermass at the crank radius

opposite to the crank at 180°.

A l 2
M = =X Tmra

m~=35m=35x3=105kg

Though care is taken in the design ol rotating parts of a machine to eliminate any out-of-balance force or
couple, still some residual unbalance will always be left in the finished part. This may happen due to slight
variation in the density of the material or inaccuracics in the casting or machining. Since the centrifugal force
and couple vary as the square of the speed, even the small errors may Icad to serious troubles at high speeds of
rotation. Thus, etfort is made to measure these out-of balance forces and couples so that suitable corrections
can be made 1o the part to reduce the final errors. The machines used may be to measure the static unbalance
or dynamic unbaiance or both. '

A halancing machine is able to indicate whether a part is in balance or not and if it is net, then it measures
the unbalance by indicating its magnitude and location.

1. Static Balancing Machines

Static balancing machines are helpful for parts of small axial
dimensions such as fans, gears and impellers, etc., in which the
mass lies practically in a single planc.

(i) Figure 14.45 shows a simple kind of static balancing
machine. The machine is of the form of a weighing
machine. One arm of the machine has a mandrel to
support the part to be balanced and the other arm supports
a suspended deadweight to make the beam approximately
horizontal. The mandrel is then rotated siowly either by
hand or by a motor. As the mandrel is rotated, the beam
will oscillate depending upon the unbalance of the part.
If the unbalance is represcited by a mass mr at radius r,
the apparent weight is greatest when m is at the position




(i1)
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A and least when it is at B as the lengths of the arms in the two cases will be maximum and minimum,
A calibrated scale along with the pointer can also be used to measure the amount of unbalance.
Obviously, the pointer remains stationary in case the body is statically balanced.

A more sensitive
machine than the
previous one s . = I o
shown in Fig. 14.46. J i —l

It consists of acradle ———p- L T — = F--— TR
supported on two
pivots P-P parallel
to the axis of rotation
f’f the pgrl and held 3‘Pig. 14.46

in position by two

springs S-S. The part to be tested is mounted on the cradle and is flexibly coupled to an electric
motor. The motor is started and the speed of rotation is adjusted so that it coincides with the natural
frequency of the system. Thus, the condition of resonance is obtained under which even a small

Motor Rotating part

amount of unbalance generates large amplitude of the cradie.

The moment due to unbalance = (m# @’.cos 6)./ where w is the angular velocity of rotation. Its
maximum value is - @1, If the part is in static balance but dynamic unbalance, no oscillation of the
cradle will be there as the pivots are parallel to the axis of rotation.

2. Dynamic Balancing Machines

For dynamic balancing of a rotor, two balancing or countermasses are required to be used in any two
convenient planes. This implics that the complete unbalance of any rotor system can be represented by two
unbalances in those iwo plancs. Balancing is achieved by addition or removal of masses in these two planes,
whichever is convenient. The following is a common type of dynamic balancing machine.

Pivoted-cradle Balancing Machine 1n this type of machine, the rotor to be balanced is mounted on half-

bearings it a rigid carriage and is rotated
by a drive motor through a universal joint
(Fig.14.47). Two balancing planes 4 and
B are chosen on the rotor. The cradle is

provided with pivots on left and right sides  —-{--

of the rotor which are purposely adjusted
to coincide with the two correction planes.
Also the pivots can be put in the locked or
unlocked position. Thus, if the lcft pivot is
released. the cradle and the specimen are
free to oscillate about the locked (right)
pivot. At each end of the cradle, adjustable
springs and dashpots are provided to
have a single degree of freedom system.

Correction planes

Af/. \*!B Half

| | | bearings

Motor

i
%::l : Cradle Pivof} ié
- (locked)

Pivot
{released)
‘Fig. 14.47

Usually, their natural frequency is tuncd to the motor speed.
The following procedure is adopted for westing:

1. First, either of the two pivots say left is locked so that the readings of the amount and the angle of

location of the correction in the right hand plane can be taken, These readings will be independent of
any unbalance in the locked plane as it will have no moment about the fixed pivot.
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2. Atrial mass at a known radius is then attached to the right-hand plane and the amplitude of oscillation
of the cradle is noted.
The procedure is repeated at various angular positions with the same trial mass.

4. A graph is then plotied of amplitude vs. angular positions of the trial mass to know the optimum
angular position for which amplitude is minimum. Then at this position, the magnitude of the rial
mass is varied and the exact amount is found by trial and error which reduces the unbalance to almost
Zero,

5. After obtaining the unbalance in ene plane, the cradle is locked in the right-hand pivot and released
in the left-hand pivot. The above procedure is repeated to obtain the exact balancing mass required m
that planc.

6. Usually, a large number of test runs are required to determine the exact balance masses in this type
of machine. However, by adopting the following procedure, the balance masses can be obtained by
making only four test runs.

First, make a test run without attaching any trial mass and note down the amplitude of the cradle vibrations.
Then attach a trial mass m at some angular pesition and note down the amplitude of the cradle vibrations by
moving the rotor at the same speed. Next detach the trial mass and again attach it at a 90° angular position
relative to the first position at the same radial distance. Note down the amplitude by rotating the rotor at the
same speed. Take the last reading in the same manner by fixing the trial mass at 180°. Let the four readings be

R

Trial mass Amplitude
0 X
mal X
m at 90° X,
m at 1307 Ay

Make the following construction (Fig. 14,48}

Draw a triangie OBE by taking OF =2X,, OB = X, and BE = X,
Mark the mid-point 4 on OF. Join AB.

Now,

OB=0A+AB

where

OB = Effcct of unbalance mass + Effect of the trial mass at 0,

OA = Effect of unbalanced mass

Thus, AB represents the effect of the attached mass at 0%, The proof
is as follows:

FExtend BA to D such that AP = 4AB. Join QD and DE.

Now when the mass m is attached at 180° at the same radial distance
and speed, the effect must be equal and opposite to the effect at 0%, ie,
if AB represents the effect of the attached mass at 0%, AD represents
the effect of the attached mass at 180°.

Since

OD = 0A - AD . Fig. 1448,

OD musi represent the combined effect of unbalance mass and the effect of the trial mass at 180° (X4)
Now, as the diagonals of the quadritateral QOBED bisect each other at 4, it is a parallelogram which means
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BE is parallel and equal to OD. Thus, BE also represents the combined effect of unbalance mass and the effect
of the trial mass at 80 or X4 which is true as it is made in the construction.
Now as (4 represents the unbalance, the correction has to be equal and opposite of it or 40, Thus, the
corTgction mass is given by
m. 04

m AB
A . .
or m, = m.E at an angle & from the sceond reading at 09,

For the correction of the unbalance, the mass #e has to be put in the proper direction relative to AB which
may be found by considering the reading X,.

Draw a circle with 4 as centre and 48 as the radius. As the tria) mass as well as the speed of the test run
at 907 is the same, the magnitude must be equal 10 48 or 41, and AC or AC" must represent the effect of the
trial mass, If OC represents X; then angle is opposite to the direction of angte measurement. If OC” represents
A5 then angle measurement is taken in the same direction.

Example 14.25 During the balancing of a c
' rofor using a trial mass of -
600 g, the four readings of the P
amplitude of the cradle taken
are as follows:

s
// Xa(15}

/

Trial mass Amplitude ! \
J X4(12.4) \
0 6.2 mm (X)) / ‘\
!
at 0° 9.8 mm (X5) :
at 90° 15.0 mm (X;) '1
n
at 180° 12.4 mm (X,) \

Find the magnitude andlocation of the correction
mass to balance the rotor.

Solution Draw a triangie OBE by taking OF =
2X,, OB = X, and BE = X,;. Mark the mid-point 4
on OF. Join A8 (Fig.14.49). On measurement, 48 =
9.3 mm and 8= 75°,

Then

04 6.2 -
m, = mﬁ =600 x o1 400g f:p!g. 14.‘%

As X; is found to be equal to GC” which means
the readings are taken clockwise and since for
complete balancing A8 should merge with AQ, the
mass 1s attached at 75° counter-clockwise from the
direction of the second reading.
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In heavy machinery like turbines and generators,
it is not possible to balance the rotors by
mounting them in the balancing machines. In
such cases, the balancing has to be done under S
normal conditions on its own bearings. Assume
the two balancing planes of a rotor to be 4 and '
B8 (Fig. 14.50). | I
I. First, the rotor is rotated at a speed : '
which provides measurable amplitudes
at planes A and B. Let the vectors A and
B represent the amplitudes due to the unbalance of the rotor in planes 4 and B respectively.
2. Attach a trial mass m, in the plane A at a known radivs and known angular position and run the rotor
at the same speed as in the first case. Measure the amplitudes in the two planes 4 and B. Let A, and
B, represent the amplitudes of the rotor in planes A and B respectively. Thus
Effect at 4 of the unbalance + Effect at 4 of trial mass in plane 4 = A,
Effect at 4 of trial mass in plane 4 = A, —A
Effect at B of the unbalance + Effect at B of trial mass in plane A4 = B,
Effect at B of trial mass in plane 4 =B, — B
3. Make a third run of the rotor by attaching a trial mass m, in plane 8 at a known radius and known
angular position and run the rotor at the same speed as in the first two cases. Measure the amplitudes
in the two planes 4 and B. Let A, and B, represent the amplitudes of the rotor in planes A and B
respectively. Thus
Effect at A of the unbalance + Effect at 4 of trial mass in plane B = A,
Effect at A of trial mass in plane B = A, - A
Effect at B of the unbalance + Effect at B of trial mass in plane B = B,
Effect at B of trial mass in plane 5= B, - B
Let m,, and m_, be the counter or balancing masses in planes 4 and B respectively placed at the same radii
as the trial masses.
Let m, =axm,andm,=fxm,

where @ = a.¢""", i.e., the countermass in the plane 4 is a times the trial mass located at an angle 8, with its
direction. _

and = e » 1.e., the countermass in plane B is & times the trial mass located at an angle 8, with its
direction.

For complete balancing of the rotor, the effect of the balancing masses must be to nullify the unbalance in
the two planes, i.e., in the plane 4 it must be equal to ~A and in plane B equal to -B,

Thus
(A - A+ BA-4)=-A (0
and o(B,-B)+p(B,-B)=- B (ii)
These equations can be solved for eand B. Multiplying (i) witk (By— B) and (11) with (4, - A),
(A, - A) (B, -B)+ (4; - 4) (B~ B)=-A(B,- B) Y

(A —A) (B~ By + (4, - A) (B, — B) = - B(A, A} {iv)



Subtracting (iv) trom (iu).

o [(Ay - 4) (B~ B) — (4, - A) (B, ~ B)| = B(d, - A) — A(B,

B(A, — 4)— A(B, - B)
(Ai - A\J{Bz - B] - (Az - A}(B| - B)

or x=

Multiplying (i) with (B, — B) and (il) with (4, — 4),
aid,—AV(B, - B+ B(4,~ ) (B —B)=-A(B,-B)
(A, —A) (B -B)+ (A, -4 (B,-By=—B(4,-A)

Bualanving 525_-\::

B)

(14.42)

(v
(vi)

Subtracting (v) from (vi).

B1(A;— AV (B, — B) -{4;— A) (B, — B)| =~ B(A; — A) + A(B, — B)

A(B, — B) - B(A, ~ A)

.or ﬁ:(

Example 1426 While balancing a turbine

' rofor by the field balancing
technique, the restlls wre ob-

ivined as shown in Tuble 14.7.
Find the correct balance masses to be placed in
planes A and B at the same radii as for the trial
masses. Also, find the angular positions of the

balance musses with respect to trial masses to
have the complete dynamic balance of the rotor.

Solution For the sake of simplicity, the multiplier
10-3 in the vectors 4, 4,, 4, and B, By, B, havc been
omitted which does not affect the end result.
Ase®— cos §+jsin B
A =25 Z20°0=2.5 (cos 20" + j sin 20”)
=2.349 - 0855
A, =4.2{cos 100°~sin 100" = -0.729+ 4.136§

A, = 3.6 { cos 55° + j sin 55°) = ~2.065 ~ 2.949
2

{14.43)

A4, ~ DB, - BY— (A, - A)NB, - B)

B=4.5/60°=4.5(cos60°+sin60")=2.25+3.897f
B, =3.4 (cos 125" +/sin 125°) = -1.95+ 2,785
B, = 2.6 {cos 210° +/ sin 2007 = - 2.25 - 1.3
A—A=-0729+ 4136/ - (2349 + 0.855 )
=_3.078 + 3281 j=4.5 1P
Similarly, A,~A=-0.284+2.094/=2.1 134977
B,-B=-42-1.112j=4.345 AR
B,~B=-4.5-i5.197=6.875 etz e
or writing the vectors in the polar mode and using
the complex mode of the calculator.
A=25220% A, =42 L100° A; =36 L557
B=4.5 £60° B, =3.4 £125°; B, = 2.6 L210°
Aj—A=45Z1332% A, -A=2113 Z97.71%
B, - B =4.345 £194.8° B~ B=6.875 £229.1°
These values of vector differences can also bc

obtained graphically as shown in Fig. 14.5] (a)
and (b).

- Table 147
Plune A Plane B
No. Trial mass Ampitude Phase angle Amplitude Phase angle
(kg {mm) (degrees) {mm) (degrees)
1. 0 215x10° 20 45%x 107 60
2. 3 (in plane 4) 12x 100 L00 3410 125
3 3{ in plane B) Jexio? 55 2.6 % 107 210




B(A, — A)— A(B, — B)

Now, o =
[Eq. 14.42]
4.56" ) 5 2 11341077
—2.5¢"") x 68756/ 1)
or =

456032 5 6 875¢72291°)
~2.1136"777) x 4,345¢11945°)

_9.5157 7 _ 17,188,241
30,9462 _g [goi925)

i

- A system of rotating masses is said to be in static

balance if the combined mass centre of the systern
lies on the axis of rotation.

Several masses rotating in different planes are
said ta be in dynarnic balance when there does not
exist any resultant centrifugal force as well as the
resultant couple,

Balancing of a linkage impiies that the total centre
of its mass remains stationary so that the vector
sum of all the frame forces always remains zero.
Primary accelerating force in a reciprocating engine
is mre® cosBalong the line of stroke.

The numerator and the denominator can be solved
analytically or graphically {Fig.14.5 1{c)].
ie.,

H¥TT -
o= 084 T g5

28.98¢/(1%6")
Similarly,
A(B, ~ B)- B(A, ~ A)
(A — AN B; - B) - (A, — A B, - B)
[Eq. 14.43)]
25670 x 4345611948
450" 5 4 557013327
or B=

4,532 5 6 875612291
~2.1136"9777) « 4.345070948%)
10.86¢’ 15 _ 20 25193.2")
= 30.948;(2.30) _ 9‘1895{292'50)
]0.8953“3“'?0]
- 28.988m9'60}

=0.376 er’(.‘i}l]")

Thus, the balauce mass in the plane 4

=0.685x3 =2.055 kg

Angular position = 78.1° counter-clockwise with
the direction of trial mass in the plane A.

Simitarly, the balance mass in plane 8

={.376 x3=1.128 kg

Angular position = 332.1° counter-clockwise
with the direction of trial mass in the plane B.

5. Secondary accelerating force in a reciprocating
engine is mri* cos{26)/n along the line of stroke.

6. In reciprocating engines, unbalanced forces along
the line of stroke are more harmful than the forces
perpendicular te the line of stroke.

7- In focomatives, hammer-biow is the maximum
vertical unbalanced force caused by the mass to
balance the reciprocating masses and swaying
couple tends to make the leading wheeis sway
from side to side due to unbalanced primary forces
along the lines of stroke.

8. The effect of the secondary force is equivalent



10.

10.

11.

12,

to an imaginary crank of length risn rotating
at double the angular velocity, i.e., twice of the

12.

Balancing

In V-engines, a common crank is operated by two
connecting rods at some angle.

engine speed. 13. In radial engines with a number of connecting
For complete balancing of the reciprocating parts, rods and a cormmon crank, the analysis is much
the primary forces and primary couples as well as simplified by using the method of direct and reverse
the secandary forces and secondary couples must cranks.

balance. 14. A balancing machine is able to indicate whether
If a reciprocating mass is transferred to the a part is in balance or not and if it is not, then
crank pin, the axial component of the resulting it measures the unbalance by indicating its
centrifugal force along the cylinder axis is the magnitude and location.

primary unbalanced force. 15. Field balancing is adopted in heavy machinery like

. A six-cylinder four-stroke engine is a completely turbines and generatars where it is not possible

balanced engine. to balance the rotors by mounting them on the
balancing machines,
Exercises
Why is balancing necessary for rotors of high- it is possible to make only four test runs to obtain
speed engines? the batance masses in such & machine.

. What is meant by static and dynamic unbalance in 13. What is field balancing of rotors? Explain the
machinery? How can the balancing be done? procedure,

Two masses in different planes are necessary to 14. The rator shown in Fig. 14.2{a) has the following
rectify the dynamic unbalance. Comment. properties:

Explain the methed of finding the countermasses m, =3kg r,=30mm 6,=30°

in two planes to balance the dynamic unbalance of m, =4 kg r,=20mm 6,=120°

rotating masses. m,=2kg =25 mm 8= 270"

What do you mean by force balancing of linkages? Find the amount of the countermass of a radial
How is it achieved? Explain. distance of 35 mm for the static balance.

. What do you mean by primary and secondary (2.13 kg; 239.4%)
unbalance in reciprocating engines? 15. The retor shown in Fig. 14.6(a) has the following
Deduce expressions for variation in tractive force, properties:
swaying couple and hammer blow foran uncoupled m,=3kg r,=3omm 8=30° {,=100 mm
two cylinder locomotive engine. m,=4kg r,=zomm 6,=120° L=300mm
Determine the unbalanced forces and couples in my=2kg r=25mm  f=270° [=6oomm
case of following in-line engines: fn=35mmands =20mm

(i} two-cylinder engine {. L, and [, are the distances from the bearing 1.
(i) four-cylinder four-stroke engine The axial distance between the bearings is soo
(i) six-clinder four-stroke engine. mm. Determine the countermass to be placed in
Find the magnitudes of the unbalanced primary the places of m, and a mid-plane of m, and m, for
and secondary forces in V-engines. Deduce the the complete balance.
expressions when the lines of stroke of the two (m, =1.96kg, 545.3°; m_, = 3.25 kg, 238.2°)
cylinders are at 60° and go° to each other. 16. A-rotor has the following properties:

Explain the method of direct and reverse cranks to Mass | Magnitude | Radius | Angle | Axial distance
determine the unbalance forces in radial engines. from 1st mass
What do you mean by balancing machines? -

Describe any one type of a static balancing L 9kg oomm ° o

machine. 2 7kg 120 mm 600 160 mm
Describe the function of a pivoted-cradle balancing 3 8lg 140mm 1350 320 mm
machine with the help of a neat sketch. Show that 4 G kg 1zomm | 270 sbomm

If the shaft is balanced by two countermasses
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17.

13.

15,

Theory of Machines

located at 100 mm radii and revolving in planes
midway of planes 1 and z, and midway of 3 and 4,
determine the magnitude of the masses and their
respective angular positions.
(6.9 kg, 23°% 15.8kg, 222.6°)
Four masses A, 8, Cand D are completely balanced.
Masses C and D make angles of go® and 210°
respectively with 8 in the same sense. The planes
containing B and C are 300 mm apart. Masses A,
B, € and D can be assumed to be concentrated at
radii of 360, 480, 240 and 300 mm respectively.
The masses 8, £ and D are 15 kg, 25 kg and 20 kg
respectively. Determine the
{iy mass A and its angular position
(i) positions of planes Aand D
{10 kg, 236°; A is 985 mm towards right and
D is 378 mm towards left of plane B}
A single-cylinder reciprocating engine has a
reciprocating mass of 6o kg. The crank rotates at
60 rpm and the stroke is 320 mm. The mass of the
revolving parts at 160 mm radius is 40 kg. If two-
thirds of the reciprocating parts and the whole
of the reciprocating parts and the whole of the
revolving parts are to be balanced, determine the
(i) balance mass required at a radius of 350 mm
(i) unbalanced force when the crank has turned
so° from the top-dead centre
(36.57 kg; 209.9 N)
The cranks of a three-cylinder locomotive are set
at 120°. The reciprocating masses are 450 kg for
the cylinder and 390 kg for each outside cylinder.
The pitch of the cylinders is 1.2 m and the stroke
of each piston is soo mm. The planes of rotation
of the balance masses are géo mm from the inside
cylinder. If 40% of the reciprocating masses are to
be balanced, determine the magnitude and the
position of the balancing masses required at a
radial distance of 500 mm, and the hammer-blow
per wheel when the axle rotates at 350 rpm.
{86.25 kg each at 24° and 216°; 57.9 kN)
The firing order of a six-cylinder vertical four-
stroke in-line engine is 142635. The piston stroke
is 8o mm and the length of each connecting rod is
180 mm. The pitch distances between the cylinder
centre lines are 8o mm, Bo mm, 120 mm, 8o mm
and 8o mm respectively. The reciprocating mass
per cylinder is 1.2 kg and the engine speed is 2400
rpm. Determine the out of balance primary and
secondary forces and couples on the engine taking
4 plane midway between the cylinders 3 and 4 as
the reference plane.

21.

22.

23.

25,

(Completely balanced engine; no out of balance
primary and secondary forces and couples)
A four-cylinder engine is arranged as shown in Fig,
14.22. The reciprocating masses in planes 1 and 4
are each 142 kg and in planes 2 and 3 are each 200
kg. if the crank radii are 400 mm each, the speed
200 rpm and the length of the connecting rod is
1.6 m, determine the magnitude of primary and
secondary forces and couples. Given that a=25° f8
=g0% {,=1.28mand{,=0.5m.
{Primary forces and couples are zero; Secondary
force = 4959 N; Secondary couple = 20.85 kN.m)
The cylinders of aV-engine are set at anangle of 40°
with both cylinders connected to a commaon erank,
The connecting rod is 300 mm long and the crank
radius is 60 mm. The reciprocating mass is 1 kg per
cylinder whereas the rotating mass at the crank
pin is 1.5 kg. A balance mass equivalent to 1.8 kg
is also fitted opposite to the crank at a radius of 8o
mm. Determine the maximum and the minimum
values of the primary and secondary forces due to
inertia of the reciprocating and rotating masses if
the engine rotates at goc rpm.
{461.4 N, 354.9N;152.4 N, 46.9 N}
Two outer cranks of a four-crank engine are set at
120" to each other with each reciprocating mass as
400 kg. The spacing between the planes of rotation
of adjacent cranks are 450 mm, 750 mm and 600
mm. Determine the reciprocating mass and the
relative angular pasition of each of the inner
cranks if the engine is to be in complete primary
balance. Also, determine the maximum secondary
unbalanced force if the length of the crank and
the connecting rod are 300 mm and 1200 mm
respectively and the speed is 240 rpm.
(878 kg, 314%; 853 kg, 162°, go kiN}
Fazch crank of a four-cylinder vertical engine is 225
mm. The reciprocating masses of the first, second
and the fourth cranks are 100 kg, 120 kg and 100
kg and the planes of rotation are Boo mm, 300 mm
and 300 mm from the plane of rotation of the third
crank. Determine the mass of the reciprocating
parts of the third cyiinder and the relative anguiar
positions of the cranks if the engine is in complete
primary balance.

(120 kg; 8, =0° 8, =157.7°, 8, = 229.5°, 6, =27.2°)
The connecting rods of a three-cylinder air
compressor are coupled to a single crank and the
axes are at 120° to one another. Each connecting
rod is 180 mm long and the stroke is 120 mm,
The reciprocating parts have a mass of 1.8 kg per



cylinder. Find the magnitude of the primary and
secondary forces when the engine runs at 1200

Balancing Sg

crank radius for complete primary and secondary
balancing of the engine. (108 kg)

rpm. 27. While balancing a turbine rotor by the field
(2.558 kN, 852.7 N) balancing technique, the results obtained are
26. A radial aero-engine has nine cylinders equally shown in Table 14.8.
spaced with all the connecting rods coupled Find the correct balance masses to be placed in
to a common crank. The crank and each of planes A and B at the same radii as for the trial
the connecting rods are 140 mm and 540 mm masses. Alsg, find the angular positions of the
respectively. The reciprocating mass per cylinder is balance masses with respect to trial masses to
2.4 kg. Determine the magnitude and the angular have the comptete dynamic balance of the rotor.
position of the balance rmasses required at the (2.62 kg, 71.3% 1.304 kg, 340.89
Sule 1488
Plane A Plane B
. Phase angle . Phase angle
Ne. Trial mass Amplitude (mm} Amplitude {mm
o ’ ( (degrees) P {mm) {degrees)
1 0 Ix107 25 Sx 1o’ 10
2 3 (in plane 4) 45x 107 1ne - 38 %1073 135
3 3 (in plane B) 4x 1973 60 32x 107 215




Introduction

A Grake is an appliance used to apply frictional resistance to a moving body to stop or retard it by absorbing its kinetic
energy. In general, in all types of motion, there is always some amount of resistance which retards the motion and is
sufficient to bring the body to rest. However, the time taken and the distance covered in this process is usually too
{arge. By providing brakes, the external resistance is considerably increased and the period of retardation shortened.

A dynamometer is a brake incorporating a device to measure the frictional resistance applied. This is used to
determine the power developed by the machine, while maintaining its speed at the rated value,

The functional difference between a ciutch and a brake is that a clutch connects two moving members of amachine
whereas a brake connects a moving member to a stationary member.

“TYPES OF BRAKES

The following are the main types of mechanical brakes:
(i) Block or shoe brake

(ii) Band brake

(i) Band and block brake

(iv) Internal expanding shoe brake

2 BLOCK OR SHOE BRAKE

A black or shoe brake consists of a block or shoe which 1s pressed against a rotating drum. The force on the
drum is increased by using a lever {Fig. 15.1(a)]. I only one block is used for the purpose, a side thrust on
the bearing of the shaft supporting the drum will actl. This can be prevented by using two blocks on the two
sides of the drum [Fig.15.1{b)]. This also doubles the braking torque.

(L=

‘Fig 151
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A material softer than that of the drum or the rim of the wheel 15 used to make the blocks so that these can
be replaced easily on wearing. Wood and rubber are used for light and slow vehicles and cast steel for heavy
and fast ones.

Let # = radius of the drum
4 = cocfficient of friction
F, = radial force applied on the drum (not shown in the figure)
R, = normal reaction on the block (= F))
F = force applied at the lever end
F,= frictional force = it R,
Assuming that the normal reaction R, and frictional force ' act at the mid-point of the block,
Braking torque on the drum = frictional force X radius
ar
Fp= R, xr (15.1)
To obtain R, consider the equilibrium of the block as follows.
The direction of the frictional force on the drum is to be opposite to that of its rotation while on the block
it is in the same direction. Taking moments about the pivet O [Fig. 15.1(a)].
Fxa--R,xh+uR, xe=0

Fa
Ry=——+ (15.2)

Also

b= Rn;_
o

(15.3)

* When b = pc, F = {4, which implies that the force needed (o apply the brake is virtually zero, or that
once contact is made between the block and the drum. the brake is applicd itsclf. Such a brake is known
as a self-locking brake.

» As the moment of the force F,about (J is in the same direction as that of the applicd force F, Fraids in
applying the brake. Such a brake 1s known as a self-energised brake.

+ If the rotation of the drum is reversed. i.¢., it is made clockwisce,

F =R, [(b+ pcya]
which shows that the required force # will be far greater than what it would be when the drum rotates

counter-clockwise,

. a N . .
» If the pivot lies on the line of action of 7 ie..at O, ¢ =0and ' = R, 7 which is valid for clockwise
as well as for counter-clockwise rotation.
» |f ¢ is made negative, i.e., if the pivol is at 07,

. b+ e . .
F=R, [ H for counter-clockwise rotation
u

arxd
B
F= Rn( He

a

] for clockwise rotation
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¢ In case the pivot is provided on the same side of the applied force and the block as shown in Fig.
15.1(c), the equilibrium condition can be considered accordingly.

In the above treatment, it is assumed that the normal reaction and the frictional force act at the mid-point of

the block. However, this is true only for small angles of contaci. When the angle of contact is more than 407,
the normal pressure is less at the ends than at the centre. In that case, i has to be replaced by an equivalent

. 4sin[g]
}l_{ :‘u 2

coefficient of friction g’ given by

Two block brakes are shown
in Figs. 15.2¢a) and (b). The
diameter of the brake drum in
each case is 1 m. Each brake
sustains 240 N.m of torgue at 400 rpm. The
coefficient of friction is 0.32. Determine the
required force tfo be applied when the angle of
contact in the two cases are 35°and 100° Also,
find the new values of ¢ for self-locking of the
brake.

Assume the rotation of the drum to be both
clockwise and counter-clockwise.

Example 15,1

[+—150 —+}= 800 '
l ?

727 - f_L
, '2_? 2
o F

p—150 —>f}«——— 800
. 4 L
V/V BRIIE

SN ’
(mim)
{b)

“'Fig. 152}

+sme
Solution
Tp=240 N.m, r=0.5m
(a} Angle of contact = 35°
H=032
Tp=uR,r
240=032 xR, x 0.5
R, =1500N

Rotation clockwise
Fa-Rbh-—ptR.c=0
Fx(0.8-1500x(.15-0.32x1500x0,025=0
Fx08-225-12=0
F=29625N

Rotation counter-clockwise
Fx0.8--1500%0.15+32x 1500 x0.025=0
F=26625N

For self-locking, F is to be zero. For a positive
value of ¢ this is possible for counter-clockwise
rotation of the drum, i.e., when

0-1500x0.15+032% (500 xc=10

o = ——0'15 = 0.46% m or 469 mm
0.32

(b)Y Angle of contact = 100°
,_ [ 4sin{8/2)
#= [ 0+sind J
45sin 50°

=032 =036

100 X —— + sin 100°
120

TB = .Iu, Rn r

240=036 xR, x 0.5

R =1333N



Rotation clockwise

FX08 1333x0.15-0.36x 1333 x0.025 = 0
0.8 F-200 12=0
F=265N

Rotation counter-clockwise
Fx08-1333x0.15+036x 1333 < 0.025 -0
ORF-200+12 =0
F=235N

For self-locking
0-1333x0.15+036 %1333 xec=0

0.15
o ¢=——=0417mor4l7 mm
0.36

( Note; 400 rpm is the superfluous data in the problem?

Example 15.2 A bicycle and rider, travelling
at 12 km/h on a level road,
have a mass of 105 kg A
brake is applied to the rear
wheel which is 800 mm in diameter: The pressure
oh the brake is 80 N and the coefficient of friction
is 0.06. Find the distance covered by the bicycle
and number of turns of its wheel before coming

fo rest.

Solution

m =105 kg d=08m
12000

V2 e = 3 333 myfs F.=80N=R,
3600 =0.06

Let v = distance covered by the bicycle before it
COMes 10 rest,

Work done against friction = KE of the bicycle
and the rider

Lo
UR .5 = 3 muv

1
0.06 x B0 x5 = EX 105 x (3.333)

s=121.5m
rdn=s

or ax0.8xn=121.5
# = 48.3 revolutions

Example 15.3 A brake drum of 440 mm in dia-
meter is used in a braking svs-
tem as shown in Fig. 15.3fa).
The brake lever is inclined

Brakes and Dynamomelers 5337

at an angle of 20° with the horizontal. A vertical
Jorce of 400-N magnitude is applied at the lever
end. The coefficient of friction is 0.35. The brake
drunt has a mass of 160 kg and it rotates af
1500 rpm. Determine the
(i} braking torque
(ii} number of revolutions made by the drum
and the time taken before coming to rest
Jrom the instant the brake is applied

| 4
400 cos 20° N 400 N

{b)

-Fig. 15.3.»

Solutinn
4 =440 mm, r = 220 mo. x = 0.35.m = 160 kg,
N = 1300 rpm. £ =400 cos 20°N

Angle of contact is not given. It may be assumed
small so that g =0.35

The line of friclional lorce passes through the
fulcrum.

(1) TFakitg momentls about the fulerum [Fig.

15.3(b}].

400 cos 20°x 900 + u R, x0 - R_x300=0
or R,=11276N
Tp=p R, r=035x11276x022=86.8 N.m

{ii) Kinclic energy of the brake drum = Work
done against friction
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|
or Emv2 =T

or @x(nx{}.MxlSOOT=86‘8X2}m
2 60

or 80x1194.2=5454xn or n =175
. _n 175 _
Time taken, I—E—m— 7s

Example 154 A spring-operated pivoted
shoe brake shown in Fig. 15.4
{a) is used for a wheel diameter
of 500 mm. The angle of contact
is 90° and the coefficient of friction is 0.3. The
Jorce applied by the spring on each arm is 5 kN.
Determine the brake torque on the wheel.

= '
Ol—=5KkN 5 kN=——0

600 —»]

-t
1

-— ﬁ ﬁ (mm}

{

|
100
(a)

400

Ty
OF—5kN 5 kN--—rC_;

400 ——|<— 600 —=|
: N
QSOT-:.E“
liu?
\ \‘*[\\
[

-

Sotution
H=0.73;
F=35000N;
d = 500 mm,
¥ =250 mm
Assuming the rotation to be clockwise, the
various forces acting on the two blocks are shown
in Fig. 15.4(b).
. 4sin (8;’2)) .
NO J = T . a
. ( & +sin 8
=03 _ﬂfg_ —0.33
(7 /2)+sin90°

For the left-hand side block, iaking moments
about (3,

Fxl-R,x04+uy R, x(025-0.05)=0
5000x1-R,, x04+033xR,  x02=90
R, =14970N

For the right-hand side block, taking moments
about (3.,

S000% 1 —R,, x04—033%XR,,x02=0
R,=10730N

Maximum braking torque, 7z =t (R, + R,3) »
= 0.33 (14970 + 10 730) x 0.25

=2120 N.m

Example 15.5 Figure 13.5(a} shows an

arrangement of a double
block shoe brake. The force

- to each block is applied by
means of a turn buckle with right and lefi-
handed threads of six-start with a lead of 40 mm.
The diameter of the turn buckie is 20 mm and
it is rotared by a lever. The angle subtended by
each block is 80°. The coefficient of friction for
the brake blocks is 0.3 and for the screw and the
nut, (.18, Determine the brake torque applied by
a force of 80 N at the end of the lever.




Solution Forscrewandnut:lead=40mm, d=20mm,
H=018

For brake blocks, gt =0.3; For lever: /=430 mm,
F' =80N

Diameter of the brake drum = distance between
the pivot = 240 mm

Assume the rotation of the drum to be clockwise.
The various forces on the two blocks are shown in
Fig. 15.5(b).

For the screw and nut,

Brakes and Dyramometers

tfma—@“-‘w = 0.637
rd  ax20
or  =232.5°

H=0.180r tan p=0.18 or ¢=10.2°
Torque shared by each side of the spindle

F'xi 80x450
= = > =18 000 N.mm

If ¥ be the force applied on each block along the
screw axis,

T=Ftan{a+ @.rorl8000
=Ftan (32.5°+ 1022y =< (20/2) or F= 1951 N

p,_p{4sin(9,-"'2)]
f+sin@

~0 45in 40°
T80 1 180) + sin 80°

] =(.324

For the left-hand side block, taking moments
about (J,,

Fx036-R, x018=0
or 1951 x0.36-R,, x0.[8=0
or R, =3902N

For the right-hand side block, taking moments
about O,,

Fx036-R,%x018=00rR,=R, =3902N

Maximum braking torque, T3 = " (R, + R, r
=0.324(2x3902)x0.12=303.4 N.m

Example 15.6 A double-block brake is
operated by a sprocket-and.
chain mechanism as shown
in Fig. 15.6. As a force F is
applied at the end of the lever, the sprocket causes
tensions in the chains. The brake drum diameter
iz 240 mm. The angle of contact of each block is
9(°. Determine the force F required to apply the
brake if a power of 1.6 kW at 300 rpm is being
transmitted by the system.
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Solution

P=16kW, J=240 mm, N =300 rpm. &= 90°

As the angle of contact 1s more than 40°,

.u’=;u[

4sin(@/2))
8 +siné

= ().385

Let T be the tension in the chains. Take moments
about the centre of sprocket,

Fx280=Tx40+Tx40 or T=35F (1}

Upper shoe block: Let T be the tension in the cham.
Taking moments about the fulcrum O,

Tx(160+300)— R, x 160 - 0.385 R, x 120 =0
or 460x3.5F=2062R,, or R,=7.808 F

Lower shoe block: Taking moments about the
fulerum &

Tx(160+220) - R, x 160 +0.385 R ,x 120=0
or 380X 3.5F=1138R, or R,=1169F

or Muximum braking torque, 7= ' (R, + Rz} r
0385 (7812 F 4+ 1169 Fyx0.12

={"9F

As P=Tyx o

nl

27 % 300
60

16 = 0.9 F'x

F=506N

’ 45in45°
={1.32 T )
90 x — + 51n YO°
180

153 . BAND BRAKE

It consists of a rope, belt or Hexible steel band (lined with
friction materialy which is pressed against the external
surface of a cylindrical drum when the brake is applied. The
torce is applied at the tree end ot a lever (Fig. 15.7).

Brake torque on the drum = (7| - T5)
where r is the effective radius of the drum.

The ratio of the tight and the slack side tensions is given
by T/T, = &% on the assumption that the band is on the point
of slipping on the drum.

The effectiveness of the force ¥ depends upon the

s direction of rotation of the drum

» ratio of lengths ¢ and b

» direction of the applied force ¥

To apply the brake to the rotating drum, the band has to be
tightened con the drum. This is possible if

(i) Fis applied in the downward direction when a = b

(i) Fis applied in the upward direction when a < b
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If the force applicd is not as above, the band is further loosened on the drum which means no braking
effect is possible.

(i) a > b, F Downwards
(a) Rotation Counter-clockwise For counter-clockwise rotation of the drum, the tight and the slack
sides of the band will be as shown in Fig. 15.7,
Considering the forces acting on the lever and taking moments about the pivot,
FIl Tia+Tyb=0
. Ta-Tb
f

As T, > T, and o > b under all conditions, the effectiveness
of the brake will depend upon the force F.

or F (15.4)

— M

(b} Rotation Clockwise In this case, the tight and the
slack sides are reversed as shown in Fig, 15.8

Now, Fi-T,a+T h=0 or F=-%=

As T, < T, and a > b, the brake will be eflective as long as
To.a is greater than 7.6

I, b
or Tya>T b ot-2>=
2 T a

i.e.. as Jong as the ratio of 7, to T is greater than the ratio  Fig. 158”‘%

bia.
I, a . . . . . . .
When — < —_ F is zero or negative, i.c., the brake becomes self-locking as no force is needed to apply the

1
brake. Once the brake has been engaged, no further force is required to stop the rotation of the drum.

(ii) a < b, Fupwards

/

n
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{(a) Rotation Counter-clockwise The tight and the slack sides will be as shown in Fig. 15.9(a).
Therefore,

Fl+Tya -Tih=0

Lh- 1, -
or F:i%JE (15.5)
As T, < T and b > g, the brake is operative only as long as
T,b>T L8
b o2
20T hva o Ty

Once 7,/T| becomes cqual to a/h, F required is zero and the brake becomes self-locking.

(b) Rotation Clockwise The tight and the slack sides are shown in Fig. [5.9(a).
hh-Ta

FromFig, 159(b), F{-T, bt Fha~0 or F ===

As Ty > T, and b > a, under all conditions. the effectiveness of the brake will depend upon the force F.

* When @ = A, the band cannot be tightened and thus, the brake cannet be applied.

s The band brake just discussed is known as a differentiol hand
hrake. However, if either a or b is made zero, a simple band
brake is obtained. If » = 0 (Fig.15.10) and 7 downwards,

Fi-Tya=10

or F:E% (15.6)

Similarly, the force can be found for the other cases.
Note that such a brake can neither have seif-encrgising properties
nor it can be self-locked,

e The brake is said 10 be more effective when maximum braking ; y
force is applied with the least effort . ;Fig. 15.10¢
For case (i), when « = b and ¥ is downwards, the force (effort) F
required is less when the rotation is clockwise assuming that the brake is cffective.

For case (ii}, when a < b and £ is upwards, F requireel is less when the rotation is counter-clockwise
assuming that the brake 15 effective,

Thus, for the given arrangement of the differential brake, it is more effective when

{a) a>bh, F downwards, rotation clockwise F
(by @ > b, Fupwards, rotation counter-clockwise

¢ The advantage of sell-locking is taken in hoists and
conveyers where motion is permissible in only one
direction. If the motion gels reversed somehow, the
self-locking is engaged which can be released only by
reversing the appiied toree.

e [t is seen in (V) that a differential band brake is more
effective only in one direction of rotation of the drum,
However, a two-way band brake can also be designed
which is equally effective for both the directions of :
rotation-of the drum (Fig. 15.11}. In such a brake, the two -Fig. 15.1%*
lever arms are made equal.




For both directions of rotation of the drum,
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Fi-Ta-Ta=0

or F=(T +T-_,)? (15.7)

Example 15.7 A differential band brake has
a drum with a diameter of 800
mm. The two ends of the band
are fixed to the pins on the
opposite sides of the fiderum of the lever at
distances of 40 mm and 200 mm from the
fulcrum. The angle of comtact is 270° and the
coefficient of friction is 0.2. Determine the brake
torque when a force of 600 N is applied to the
lever at a distance of 800 mm from the filcrum.

Solution F=600N, /=800 mm, r=400mm, &

=270° and u=02
e Assuming g = 200 mm and b= 40 mm, i.e.,
a > b, F must act downwards to apply the
brake (Fig. 15.7).
T i eD.?.xTHJx% 257
L
Counter-clockwise rotation of the drum
Taking moments about the fulcrum,
Fl-Ta+T,b=0
600 x 800 -2.57 7, x200+ T, x40=10
or T,=1012.7 N and
T,=1012.7x2.57=2602.5N
Braking torque, T, = {2602.5 - 1012.7) x 0.4
=636 N.m
Clackwise rotation of the drum
Taking moments about the fulcrum ¢J,
FI+T b-T,a=0 (Fig. 15.8)
600 x 800+ 257 T, x40 - T, % 200=0
or 600 x 800 = T, (200 — 2.57 x 40)
or T,=4938 N and 7| =4938 x 2.57 = 12691 N
Ty=(T, - Ty) r=(12691 -4938) x 0.4
=3101 N.m
» Assuming @ = 40 mm and »= 200 mm, i.c.
a < b, F must act upwards to apply the brake.
Counter-clackwise rotation of the drum
600 % 800 + 257 T, x40 - T, x200=0
(Fig. 15.9a)

or 600 x 800 =T, {200 - 2,57 x 40)
or T,=4938 N and 7, =4938%2.57= 12691 N
Braking torque, 75 =(7, - Ty r
=(12 691 — 4938) x 0.4 =3101 N.m
Clockwise rotation of the drum
600x 800+ T, x40 -2.57 7, x200=0
{Fig. 15.9b)
or I=10127N
and T, =1012.7%x2.57=2602.5 N
Tp=(2602.5-1012.7)x0.4 =636 N.m
The above results show that the effectiveness of
the brake in one direction of rotation is equal to the
effectiveness in the other direction if the distances
of the pins on the opposite sides of the fulerum
are changed and the force is applied in the proper
direction so that the band is tightened.

Example 15.8 A simple band brake (Fig.
15.12) is applied to a shaft
carvying a flywheel of 250-
kg mass and of radius
of gyration of 300 mm. The shaft speed is 200
rpm. The drum diameter is 200 mm and the
coefficient of friction is 0.25. Determine the
(i) brake torgue when a force of 120 N is
applied at the lever end
(ii} number of mrny of the flywheel before it
comes o rest
(iii) time taken by the flywheel to come to rest

Sofution

[+100 be—— 280 —]

120N

Fig, 15.12"
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m =250 kg =025

k=300 mm F = 100 mm
N =200 rpm a~ 100 mm
B=135° £ 280 mm

(i) 0=360°-135°=225¢
or  6=225x-2 =393 rad
180

ﬂ_ = MO = I _ 5 o
L5

Taking moments about O,
Fxl/-T/xa=10
120 x 280 -7, < 100=0
Ty=336N

L =230 _ 258N
267

Tp=1(330—-1258)%x0.1 =21 N.m
(i) K¥ of the flywheel

I, (2N Y
e = e (250)
2 27 160

! 2 (2rx200
= = % 250 % (0.3)° x[M]
2 60

=4935 N.m
Let the KE be used 1o overcome the work
done by the braking torque in # revolutions.
Then
T X Angular displacement = KE of fiywheel
2l x2 nr=4935
# = 37.4 revolutions

(1) For uniform retardation, average speed
= 200/2 =100 rpm

-

. w3 .
Time taken = — = ——min.
N

_ 374 144

100/ 60

Example 15.9  Asimple band brake is applied
to a drum of 560-mm diameter
which rotates at 240 rpm, The
angile of contact of the band is
27(P. One end of the band is fastened to a fixed
pin and the other end to the brake lever. 140 mm
Jrom the fixed pin. The brake lever is 800 mmiong

and is placed perpendicular to the diameter that

bisects the angle of contact. Assuming the
coefficient of friction as 0.3, determine the
necessary pull at the end of the lever to stop the
drum if 40 kW of power is being absorbed. Also,
find the width of the band if its thickness is 3 mm
and the maximum tensile stress is limited to 40
N/mm,

Solution  The brake is shown in Fig. 15.13.
N'=240 rpm, d = 560 mm, r = 280 mm, & = 270°,
a = 140 mm, { = 800 mm, g = 0.3, P = 40 kW,
¢t =3 mm, ¢ = 40 N/mm?.

140 cos 45° 130

I a .‘-
T O}g'] 2

(mmy}

'Fig. 1513]

Tt can be observed from the figure that to tighten
the band. the force is to be applied upwards. If the
drum rotates counter-clockwise, the tight and slack
sides will be as shown.

2N 2w %240 o
©= "0 60 °F
Flap, =27 Z_ 1 d

Angle of lap, 8= 270 x 180" Srra

ﬂ = eﬂﬂ = 05T g

h
Also, P:== TH.'a)

=[7, -yl @
or 40000=(T,-T,)x0.28 x 8x

(7, T,)= 5684

or 411 7,- T, = 5684



T,= 1828 N
7,= 1828 x 411 = 7514 N

Take moments of the forces on the lever about
the fulgrum O,
Fx 800 = 1828 » 140 cos 45°

F=2262N

Let » be the width of the band.
Maximum tension, 7, = 0. &./
7514 =40 x hx3

b=062.6 mm

Observe that if the drum rotates clockwise, the
brake is less cffective as in that case tight and slack
sides are interchanged and the force required to
apply the same brake torque is more which is

Fx 800 =7515% 140 cos 45°
F=930N

or

or

Example 15.10 A crane is required to support
a load of 1.2 tonnes on the
rope round its barrel of 400
mm diameter (Fig.15.14). The
brake drum which is keved to the same shaft
as the barrel has a diameter of 600 mm. The
angle of contact of the band brake is 275° and
the coefficient of friction is 0.22. Determine the
force required at the end of the lever to support
the load. Take @ = 150 mm and | = 750 mm.

15.4 BAND AND BLOCK BRAKE

A band and block brake consists of a number of wooden
blocks sccured inside a flexible steel band. When the
brake is applied, the blocks are pressed aguinst the
drum. Two sides of the band become tight and slack
as usual, Wooden blocks have a higher coefticient of
friction, Thus, increasing the effectiveness of the brake.
Also. such blocks can be easily replaced on being worn
out [Fig.15.15(a)].

Each block subtends a smail angle of 28 at the centre
of the drum. The frictional force on the blocks acts in
the direction of rotation of the drum. For # blocks on
the brake,
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Brake drum
Barrel

Fig. 15,14

Solution
W= (1.2 1000 x 981} N
R =300 mm
¥ = 20{} mm
=022
G==275°

5
T’\

=2.87
For cquilibrium,
(T, -TIR=Wxr
(2.87 75~ Tx300=(1.2x 1000 x9.81)x 200
7,=4197N.m
T, =4197 % 2.87= 12045 N.m
Taking moments about G,
Fxl-T/xa=10
Fx750 12045x150=10

1Y
(1225275 —
=M = ¥

or

oar
ar

F=2407 N

Ta
¢4 uRy
0
B o
=
1T 0
@
Woaden blocks T
(@) ')

‘Fig. 15.15!
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Let T, = tension on the slack side

=
Il

; = tension on the tight side after one block

1

.....................

tension on the tight side after two blocks
T, = tension on the tight side after » blocks
4 = cocffictent of friction

R, = normal reaction on the block
The forces on one block of the brake are shown in Fig.15.15(b).

For equilibrium,

or

or

or

Similarly,

and

”

Example 15.11 A band and block brake has 14
blocks. Euach block subtends
“un angle of 14° at the centre
of the rotating drum. The
diameter of the drum is 750 mm and the

(T -Tycos@ =uR,
(i +Ty)sin8 =R,

h-To 1
I+T, an@ #
-7, jtané
h+7 I

(H-T)+T+7,)  ptan@+]

(M -Ty~(h+7;) utan6—1
2L l+pwand

27, | — pitan @
4 _1+putanB
Yy t-ptand
7, 1+yutané d4.
AR 1an g - and so on.
L, _l+ytand
I, - l1-utand
Tar _ ?ar ?;r—l TZ£
1t T;.-I T.»:—: }? Tls
_(1+p(an9 "
_\I~ytan9

(15.8)

thickness of the blocks is 65 mm, The tv_i’o ends
of the band are fixed to the pins on the lever
at distances of 50 mm and 210 mm fiom the
Julcrum on the opposite sides. Determine the
least force required to be applied at the lever



at a distance of 500 mm from the fulcrum if
the power absorbed by the blocks is 180 kW at
175 rom. Coefficient of friction between the
blocks and the drum is 0.35.

Solution

N=175mpm, d=750mm, 8 =7°, 4=0.33, P-=180
kW, f = 65 mm, /= 600 mm

Refer Fig. 15.15.

DN
P={l,-Tyv=(, - To)-—g“—

AaxX(0.75+2x0.065)x175
6}

= 180000 = (7,-T;) x

or T4,—T,=22323 N

n 5y 14
Ta _[l+ptand =(l+0.35tan7 } 3334
T 1—ptan 8 1-0.35tan 7°

or 2334 7,=223230rT;=9564N

and T,,=22323+9564=31887N

Assume a =210 mum and =50 mm (Fig. 15.15)

As a > b, F must be downwards and rotation
clockwise for maximum braking torque. Taking
moments abnau&,k the fulcrum,

Fxl-Tya*T,;h=0

Fx600—-9564 x 210+ 31887 x 50 =:0

600 F=414090 or F=690N

Example 15.12 A bandand block brake having
12 blocks, each of which
subtends an angle of 16° at
the centre, is applied to a
rotating drum with a diameter of 600 mm. The
blocks are 75 mm thick. The drum and the
fywheel mounted on the same shaft have a
mass of 1800 kg and have a combined radius of
gyration of 600 mm. The two ends of the band
are attached 1o pins on the opposite sides of the
brake fulcrum at distances of 40 vim and 150 mm
Sfrom it. If a force of 250 N is applied on the lever
at a distance of 900 mm from the fulcrum, find the

(i) maximum braking torque

(i) angular retardation of the drum

(iii) time taken by the system to be siationary

from the rated speed of 300 rpm.
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Take coefficient of friction between the blocks
and the drum as 0.3

Solution

F=250N.d=600mm, 8 =8, =75 mm, !
= 900 mm, & = 600 mm, m = 1800 kg, n = 12,
N=2300rpm. i =103

Refer Fig. 15.15.
() T _ ]+,utdn6‘
7, 1—titan @
12
1+03tan8° Yy
:[J_J = 2752
1-0.3tan 8°

Assume a = 150 mm and £ = 40 mm

As a = b, F must be downwards and the rotation
is clockwise for maximum braking torque. Taking
moments about the fulcrum,

Fxi-Tya-T,,h=0

250 X 900 - T, x 150 +2.752 T, x 40 =0
T,(150 - 2.752 x 40) = 250 x 900
T,=5636 N

T,.= 5636 2.752 =15 511 N

Maximum braking torque, T, = (T}, — 1) xf::—
~ (15 5II~5636)X(M1X—2]
=3703 N.m

(iily Ty=lo=mho

3703 = 1800 x (0.6¥X &
a=35.71 rad’s®
(iii) Inmitial angular speed,

2
o, = ”—:09-99 =314 rad/s

Final angular speed, @ =10
. @=ay- o (onegative due to retardation)
or 0=314-5711¢

t=55s
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/155 INTERNAL EXPANDING SHOE BRAKE SRR

Earlier, automaobiles used band brakes which were exposed to dirt and water. Their heat dissipation capacity
was also poor. These days, band brakes have been replaced by internal expanding shoe brakes having at Icast
one self-energising shoe per wheel. This results in tremendous friction, giving great braking power without
excessive use of pedal pressure,

Figure 15.16 shows an internal shoe automobile brake. It consists of two semi-circular shoes which are
lined with a friction material such as ferado. The shoes press against the innecr flange of the drum when the
brakes are applied. Under normal running of the vchicle, the drum rotates freely as the outer diameter of the
shoes is a little less than the internal diameter of the drum.

Leading Trailing
{Primary) shoe (Secondary) shoe

: Fig. 15.16° Internal expanding shoe brake mechanism
{without brake drum).

The actuating force # is usually applied by iwo equal-diameter pistons in a common hydraulic evlinder
and is applied equally in magnitude to each shoe, For the shown direction of the drum reation, the left shoe
is known as the /eading or forward shoe and the right as the trailing or rear shoe.

Assuming that cach shoe is rigid as compared to the friction surface, the pressure p at any point 4 on the
contact surface of the shoe will be proportional to its distance / from the pivot,

Considering the leading shoe,

pe ! =k [where k| is a constant.

The direction of p is perpendicular to Q1.

The normal pressure, p, = &/ cos (90°- ) = &,/ sin 8

= kcsin @ (O L=1sinB=csin @
= kysin B where ks is another constant

B, 15 maximum when &= 90°

Let P, = maximum intensity of nermal pressure on the lcading shoe.

Pamax = )LNIH = k2 sin U = ""'z
or p,= P sing (15.9)
Let w = width of brake lining :
4 = coefficient of friction
Consider a small element of brake lining on the leading shoc that makes an angle 58 at the centre.
Normal reaction en the differential surface,

R = Area x Pressure
n
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= (?‘ 59 W}pn
=r 80w P, sin 8
Taking moments about the fulcrum €7,

[ g2
Fa-3 Ricsin@+ X pR (r—ccosf)y=0 {15.10)
1 )
where ¢ ¢
@2 0l ,
3 Resin® = | rewP! sin” 96
@l i
@2 1
=] rc-wP,f — (i1 —cos201d0
p! 2
= @2
_ rewp! 1(8 _sin 28]
2 2 g
r’c‘wP‘J . .
= —4——"— (29, — 2, ~sin 2¢, +sin 2¢y)
and

-

@2 P2 s L4
Y R (r—ccos@) = | yr’wP sin@d8— | prewp sinBcosfdo
@l ol @l
) i l
= ur’wP! (—cos 6?2 — | prewP! —sin 2040
4 ] 2

- @2
:,H;-3w > {cos ¢, —cosqv,)_m,(_,w,p: l( cosZG]
2 > 3 i

P
= an [4r(cos @, — cos @)~ c(c0s 2¢ —c0s 29, )]

Taking moments about the fulcrum O, for the trailing shoce,

p2 @2
Fa— Y Resn@— X uR, (r—ccos@)=0
ol ol

!
FewP

P
where S Ricsing = H2 (29, - 20, ~sin 29, +5in 29/
@ :

and
@ ,pf
3 UR (r—ccos ) = B2
o 4

[4r (cos @ —cos @, ) - ¢ (cos 2¢, ~ cos 2¢, )]

Thus P,;r and P!, the maximum pressure intensities on the leading and the trailing shoes, can be
determined.

[} i
Braking torque, Ty=2X JUR;:" + 2 URr
i ™

Pa [l
= [ w2wP sin@d6+ | ur’wh,sin@de
)

"
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=1 (P + Py (= cos Q)
= r lw(F) + P{)(cos 9 — cos ;) (15.11)

Note that for the same applied force F on cach shoe, /¥, is not equal to 7, and P =P Usually, more than
50% of the total braking torque 1s supplied by the leading shac.

Also note that the leading shoe is self-encrgizing whercas the trailing shoe is not. This is because the
friction forces acting on the leading shoe help the applied force F. and that on the trailing shoe opposc it. On
reversing the direction of drum rotation, the right shoe will become self-energizing whereas the left will not
be so any longer. _

In Eq. 15.10, if the third term exceeds the sccond term on: the LHS, F will be negative and the brake
becomes self-locking. A brake should be self-energizing but not selt-locking. The amount of self-energizing
is measured by the ratio of the friction moment and the normal reaction moment, i.¢., the ratio of the third
term 10 the second term. When this ratio is equal to or more than unity, the brake is self-locking. When the
ratio is less than unity {more than zero}, the brake is self-cnergizing.

Example 15.13  The following data refer to an . -
internal expanding shoe brake [2 x 135 % 50 2x30x 8o~ $in 270° +sin 6{)‘")
shown in Fig, 15.16:

+0.3><0.|5><0.04xp,j

Force F on each shoe = I8ON 4

Coefficient of friction, - 03 [4 X 0.15(c0s 30° - cos 35°)} _

Internal radius of the brake drum, r = 150 mm ~0.12{c0s 60° - cos 270°)

Width of the brake lining, w = 40 mm 36— 0.000 Y96 +0.000 398P =0

Distance: a = 200 mm . ¢ = J20 mm P! = 60201 N/m®

Angles: ¢, = 30° ¢ = 135° For the trailing shoe

Determine the bracking torque applied when 36— 0.000 996 P! — 0.000 3987 =0
the dm{n rotates (i} counter-clockwise, and (ii) P! =25 825 N/m?
clockwise.
Solution Braking torque,
(i) Rotation counter-clockwise Iy = r’ ,tiw(Rf + P }{cos @ ~cos @,)

Faor the leading shoe .
={0.15)* x 0.3 x 0.04 (60 201 + 25 825)(cos 30°

@ ; - , - cos 1359)
Fa— (i R csin 9+q{1 HR, (r—ccosB8)=0 —36.54 N.m
ii) Rotati lockwi
0,]5><0.12><0,04><Rf (ii) Rotation clockwise
180 x0.2 -

When the rotation is reversed, P/, and P/ are
interchanged and Thus, the braking torque is the
same.

4
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- BFFECT OF BRAKING

Consider a vehicle moving up an inclined plane (Fig. 15.17).

Brakes applied to rear wheels only
Let M = mass of vehicle
o = angle of inclination of the plane with horizontal
R, R, = reactions of the ground on the front and rear wheels
respectively
f = retardation of the vehicle
{ = wheel base of the car

h = height of centre of mass of the vehicle from the inclined Fig. 151&
surface -
x = distance of the centre of mass from the rear axle
H# = coeflicient of triction between the ground and the tyres
For equilibrium,
R,+Rp=Mgcosax (1)
URg+ Mgsinoa=Mf (ii)

where /s the retardation of the vehicle.
Taking moments about G, the centre of mass of the vchicle,

Rox+ U Raxh—R,(I-x)=0 (iif)

From (i), Ri=Mgcecosa—Ry

.. (iil) becomes,
Rox~puRyxh—i(Mgeosa-Rp)(I-x)=0

or Rg(x + ph+ {—x)=Mgcos x{/-x)
: _ Mgcosa{!—x}
or ! I+ gth

and thus {ii) becomes,

! : - . .
MgeosalU=X) | ypGina = M

I+ uh
or /= guoso I ne (15.12)
' {+ ph
On a level road, ¢ =0, and so
. {—x
f= BU—%) (15.13)

g I+ uh

When the vehicle moves down a plane,

, #—x)
f :gcosa[ T ih —tana] (15.14)
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Brakes applied to front wheels only

R+ Rp=Mgcos a (iv)
HR,+ Mgsina=Mf V)
Taking moments about G,
Rex+ R, xh-R,{(I-x) (vi)
From (iv) and (vi),
(Mgcosa—-R)x+uR, xh-R,(1-x)=0
or Mgxcoso=R, (x - ph+l-x)
_ Mexcos
A I ﬂh
Mgxcos o .
Therefore (v} becomes, i = eI Mgsina = Mf
}—uh
or
f=gcosrx{ il + lan & (15.15)
- M J
On a level road, o= (), and therefore
. Hx
f:g;_ ; (15.16)
Cn a down plane, 2
gx
= ol —— ~tana
f=gcos [f—yh an J (15.17)
Brakes applied to all four wheels
Ryt Rg=Mgcos o (vii)
HR A+ pRg+Mgsina=M/f (viii}
or H{R + Rg)+ Mgsina=Mf
or HMygcosa+Mgsino=Mf
or f=gcosa{u+tan @) {15.18)
On a level road, a = 0. Therefore
f=gu (15.19)
On a down plane,
JS=gcos a(y—tan o) (15.20)

Exampfe 15.1¢ A vehicle having a wheel base

; of 3.2 m has its centre of mass
at 1.4 m from the rear wheels
and 55 mm from the ground
level. It moves on a level ground at a speed of
54 kan/h. Determine the distance moved bythecar

before coming to rest on applying the brakes to the
(i) rear wheels
(ii) front wheels
(i) all the four wheels
The coefficient of friction between the tyres
and the road is 0.5.



Solution Let s be the distance moved by the car
before coming to rest.

B 54000
u =54 kmh = 3600 15 m/s
(i) Brakes applied to rear wheels
o g 0.5(3.2~1.4)
TE e 32+05%055
=2.54 m/s?
If retardation is uniform, v¥ — #° =-2fs
0 o’ =-2f ‘
Wt 15°

=443 m

"T3r T 2x254
(ii) Brakes applied to front wheels

r=g BX_ _gg1x 0.5x1.4
i —ph 3.2-0.5%0.55
=2.35 m/s*
s=£-= 15 =479m
2f 2x235

(iii) Brakes applied to ail the four wheels
f=gu=9.81x0.5=4.905 m/s’
u? 15

T 2fs 2x490

=229m

Example 15.15 A vehicle moves on a road
. that has a slope of 15°. The
wheel base is 1.6 m and the
i centre of mass is at 0.72 m

from the rear wheels and 0.8 m above the inclined
plane. The speed of the vehicle is 45 km/h. The
brakes are applied to all the four wheels and
the coefficient of friction is 0.4. Determine the

ERTs

TYPES OF DYNAMOMETERS
There are mainly two types of dynamometers:

(i} Absorption Dynamometers

Brakes and Dynamometers 5§

distance moved by the vehicle before coming to. .
rest and the time taken to do 30 if i moves. * -
(i) up the plane ' o

(ii) down the plane

Solution Let s be the distance moved by the car
before coming to rest.

45 000

u=45km/h=—363‘0— = 12.5 m/s

(i) The vehicle moves up
f=gcos a{y+1an )
— 9.81 X cos 15° (0.4 +tan 15°) = 6.33 m/s?
I retardation is uniform, v° — w’ =-2fs

0w =2
XL 2Y
2f 2x633 ’
Also, v=u—ft
or 0=125-633x¢
or t=197s

(ii} The vehicle moves down

f=gcos a(i—tan Q)
— 9.8 x cos 15°(0.4 — tan 15%) = 1.25 m/s

S_Ef__ 12.5 s
27 2xlas ==
Also, 0=12.5-125x¢
or t=10s

In this type, the work done is converted into heat by friction while

being measured. They can be used for the measurement of moderate powers only. Examples are
prony brake dynamometer and rope brake dynamometer.

(ii) Transmission Dynamometers

In this type, the work is not absorbed in the process, but is

utilised after the measurement. Examples are the beli-transmission dynamometer and the torsion

dynamometer.
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i PRONY BRAKE DYNAMOMETER

A prony brake dynamometer consists of two wooden | / -

blocks clamped together on a revolving pulley ’ - ‘

carrying a lever (Fig, 15.18). The friction between the ' [ )
blocks and the pulley tends to rotate the blocks in the WooderT //—i\\ 1‘ I
direction of rotation of the shaft. However, the wei ght  biocks Lever a
due to suspended mass at the end of the lever prevents \ w/y ~—— Clamp w

this tendency. The grip of the blocks over the pulley is
adjusted using the bolts of the clamp until the engine '
runs at the required speed. The mass added to the '
scale pan is such that the arm remains horizontal in
the equilibrium position; the power of the engine is
thus absorbed by the friction.

Frictional torque = 7/ = Mg/

r
Power of the machine under test = Te = Mg! 2—;?—

= MNk
where £ is a constant for a particular brake.
- Note that the expression for power is independent of the size of the pulley and the coefficient of friction.

. 'ROPE BRAKE DYNAMOMETER

over the rim of a pulley keyed to the shaft of the engine,
The diameter of the rope depends upon the power of the
machine. The spacing of the ropes on the pulley is done by Rope —
3 to 4 U-shaped wooden blocks which also prevent the rope
from slipping off the pulley. The upper end of the rape 15
attached to a spring balance whercas the lower end supports
the weight of suspended mass.
Power of the machine = Te
=(F,xnNw

In a rope brake dynamometer (Fig. 15.19), a rope is wrapped | Spring balance

Pulley rim

2aN
= {Mg —s)r
(Mg —s) 60

tlock

-
=
w

If the power produced is high, so will be the heat produced g:fl& 15-1%
due to friction between the rope and the wheel, and a cooling
arrangement is necessary, For this, the channel of the flywheel usually has flanges turned inside in which
water from a ripe is supplied. An outlet pipe with a flattened end takes the water out.

A rope brake dynamometer is frequently used to test the power of engines. It is easy to manufacture,
inexpensive, and requires no lubrication.

If the rope is wrapped several times over the wheel, the tension on the slack side of the rope, i.¢., the spring
balance reading can be reduced to a negligible value as compuared to the tension of the tight side (as 7\/T, =
e*®and 6 is increased). Thus, one can even do away with the spring balance.
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Examp:‘e 15. 16 The following data refer to a Spring balance reading = 100N
laboratory experiment with a Find the power of the engine.
rope brake: Solution
. ' 2N
Diameter of the flywheel = 800 mm P = (Mg —s)r
Diameter of the rope = § mm
Dead weight on the brake = 40 kg = (40 x9.81-100) x (0.4 + 0.004) 2z x150
Speed of the engine = 150 rom
= 18556 W
1530 BELT TRANSMISSION DYNAMOMETER R
The belt transmission dynamometer occupies a Driven
prominent position among transmission dynamometers, puiley
When a beit transmits power from one pulley to '
another, there exists a difference in tensions between i
the tight and slack sides. A dynamometer measures T \/ T 1, 2-intermediate
directly the difference in tensions (7,— 7-) while the pulleys
belt is running, Driving
Figure 1520 shows a Tatham dynamometer. A pulley
coniinuous beit runs over the driving and the driven @
; : ) T
pulleys through two intermediate pulleys. The AN N
intermediate pulleys have their pins fixed to a lever with Pt f o .
its fulcrum at the midpoint of the two pulley centres. As [ R S ——1
the lever is not pivoted at its midpoint, a mass at the . 1 I 2 /
left end is used for its initial equilibrium. When the belt Bar!:::;ng a a Stops
transmits power, the {ever tends to rotate in the counter- W (= Mg)
clockwise direction due to the difference of tensions on §‘ﬁg 15.§
the tight and the slack sides. To maintain its horizontal & :

position, a weight of the required amount is provided at the right end of the lever. Two stops, one on each side
of the lever anm, are used to limit the motion of the lever.
Taking moments about the fulcrum,

Mgl - 2T a+2Ta=10
Mgl -2a(T,-T5)=0

h-h= _‘1_{8_{
2a
Power, P=(T, - Ty)v
where v = belt speed in metres per second.

Example 1517 In a belt transmission The diameter of each of the driving as well as the
dynamometer.  the driving intermediote pulleys is equal to 360 mm, Find
pulley rotates at 300 rpm. The the value of the dead mass required to maintain
distance between the centre of the lever in o horizontal position when the power

the drwmg pulley and the dead mass is 300 mm. transmitted is 3 kW. Also, find its value when the
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belt just begins to slip on the driving pulley, u M=48.Tkg
?iglgNO.ZS and the maximum tension in the belt (i) T,=1200N, p=025 6= rxrad
Solution ;l = = M =219
N=300pm a=036m ?
I=08m p=3000W Tz:ﬁ@:ﬂgN
. Mgl 219
() P=(T,-Hhw=——xor ;
2a T -1, = _}Lig_
_ Mgl 27N ! 2a
2a 60 1200_548_Mx9‘81x0.8
2x0.36
3'000:!h‘><’.9.81><0.8x2srrx300x0‘18 V= 598k
2x0.36 60 M=50.8keg
*TRAIN DYNAMOMETER
An epicyclic-train dynamometer is another Driverr: 3?';"'3’
transmission type of dynamometer. As whee
shown in Fig. 15.21, it consists of a simple ro ' l 2F
epicyclic train of gears. A spur gear 4 is Counter-weight !
the driving wheel which drives an annular F Stops
driven wheel B through an intermediate t l
pinion C. The intermediate gear C is °
mounted on a horizontal lever, the weight [ -
of which is balanced by a counterweight at
the left end when the system is at rest. When @
the wheel 4 rotates counter-clockwise, the » Intermediate w
wheel B as well as the wheel C rotates v?hn:\elx?i wheel C

clockwise. Two tangential forces, each
equal to F, act at the ends of the pinion C,
one due to the driving force by the wheel )
A and the other due to reactive force of the g 15.@
driven wheel B. Both forces are equal if ' ‘
friction is ignored. This tends to rotate the lever in the counter-clockwise direction and it no longer remains
horizontal. To maintain it in the same position as earlier, a balancing weight # is provided at the right end of
the lever. Two stops, one on each side of the lever arm, are used to limit the motion of the lever.

For the equilibrium of the lever,

wi
2Fa=Wi or F=1"
2a
and torque transmitted = F» where r is the radius of the driving wheel

2AN
60

Thus power, P=To=Fr.
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A Bevis-Gibson  torsion Sl £ s el ettt irivlisotstuiteleiptivied )
dynamometer consists of € = - = = -
two discs 4 and B, a lamp f

and a movable torque finder Lamp Disc A Shaft  DiscB
arranged as shown in Fig. | No power transmitted . Torque
15.22(a). The two discs are §I| ) ({Light visible) I/H finder
similar and are fixed to the Mask A 8

shaft at a fixed distance from Eye-piace

discs revolve with the shaft. (Light not visible}
The lamp is masked and fixed

on the bearing of the shaft. | Power transmitted
The torque finder has an I - = .
eyepiece capable of moving

circumferentially. Each disc

has a small radial slot near its

periphery. Similar slots are

also made at the same radius

on the mask of the tamp and on the torque finder.

When the shaft rotates freely and does not transmit any torque, all the four slots are in a line and a ray of
light from the lamp can be seen through the eyepiece after every revolution. When a torque is transmitted, the
shaft twists and the slot in the disc B shifts its position. The ray of light can no longer pass through the four
slots, However, if the eyepiece is moved circumferentialty by an amount equal to the displacement, the flash
will again be visible once in each revolution of the shaft. The eyepiece is moved by a micrometer spindle.
The angle of twist may be measured up to one hundredth of a degree.

In case the torque is varied during each revolution of the shaft as in reciprocating engines and it is required
to measure the angle of twist at different angular positions, then each disc can be perforated with several slots
arranged in the form of a spiral at varying radii {Fig. 15.22(b)]. The lamp and the torque finder have to be
moved radtally to and from the shaft so that they come opposite each pair of slots in the discs.

gach other. Thus, the two Cﬂ: . Power transmitted _ﬂ Slats
[ |

{Light visible} "

(b}

AUTOMOTIVE PROPULSION

The power required for propulsion of a wheeled vehicle depends mainly on the tractive resistance, i.., the
resistance faced by the vehicie on the road. The main components of the tractive resistance are the road
resistance, aerodynamic resistance and gradient resistance.

1. Road Resistance

Road resistance consists of two types of resistances: rolling resistance and frictional resistance.

Rolling resistance Rolling resistance depends upon the condition of the road surface on which the vehicle
is moving. For rail road its value is around 45-50 N per 1000 kg whereas for roads its value may vary from
80 to 250 N. However, for general purposes this can be assumed to be 150 N per 1000 kg. For cord tyres the
value is approximately 2/3 of that for fabric tyres.



Theory of Machines

Frictional resistance Transmission losses like losses in the gear box, bearings, il churning, etc., are included
under frictional resistance. [n direct gear, these Josses are estimated at 10-12% and in a low gear at 15 to
20%, For private cars these figures may be taken somewhat lower.

2. Aerodynamic Resistance

Aecrodynamic resistance is the tesistance posed by air or wind and depends upon speed of the vehicle, its
shape and the wind velocity. It can be taken as
R, = kAV? (15.21)

where R, is the air resistance in N, kis a coefficient of air resistance, 4 is the projected area of the vehicle in
m? and ¥ is the vehicle speed in kmv/h. The usual value of & can be taken as 0.03 for average cars.

3. Gradient Resistance

It is dependent upon the weight of the vehicle and the gradient of the surface and is independent of the vehicle
speed. Thus

R,= Mg G, (15.22)

where R, is the gradient resistance in N, Mis the mass of the vehicle in kg and (, is the surface gradient and
indicates the slope.

The sum of the road resistance, aerodynamic resistance and gradient resistance is known as fractive
resistance (R))

Power required or demand power is

RV
7 x 1000

where 17 is the transmission efficiency (from engine shaft to the wheel axle), R, is the tractive resistance and
¥ is the velocity in kmv/h.

(15.23)

Example 15.18 A car with passengers has r,=034m V=175 km/hr

a . mass of 1200 kg and a
frontal area of 1.8 m’. It is
traveling up a gradient of 1
in25ata speed of 75 km/h. The rolling resistance
of the car is given by R, = (0.0112 + 0.00006 V).
Mg and the air resistance coefficient is 0.02688.
The engine develops 50 kW corresponding to an
engine spéed of 4500 rpm. The rear axle ratio is
' 5:1 and the transiission efficiency is 96%. If the
wheel radius is 340 mm, determine the
1. mractive resistance
2. tractive effort available at the wheels and
3. accelerdtion while moving up the gradient

Solution
M=1200kg A=18m?
G, = 1/25=0.04 P=50000W
G=5 n=0.96

Tractive resistance,
R = (0.0112+0.000 06 V) Mg + Mg.G,+0.026 88 41~
= (0.0112 + 0.000 06 V + G,) Mg + 0,026 88 A}~
= (00112 + 0.000 06 x 75 + 0.04) x1200 x 9.81
+0.026 88.x1.8 X75°

=635.7+2723
=928 N
T)‘\:w“’
Brake power available = T, @, = 1
Fory @
50000 = G 'n
= (Fr). 22N 1
60G N
- (F, x0.34) 2Zx450 1
60x5 096

F,= 498N



Thus, force available for acceleration
= 1498 - 62¥
= 570N
or Mxf =810
or 1200xf = 570
£ = 0.475 ms?

0.4
= 75 % 3600 = 1.71 km/h/s
1000

Example 15.19 The resistance fo motion is
given by

R,=(0.011 + 0.000 05 V) Mg
+0.028 AV?

where M is the mass in kg, V is the velocity in
km/h and A is the frontal area in m’.

A jeep of 1400 kg mass and 2.4-m’ frontal
area is used to pull a trailor with a gross mass of
800 kg at 50 km/h in top gear on level road. If the
Jjeep is capable of developing 40 kW of power for
propuision, find whether it is adequate for the
Jjob. The transmission efficiency may be faken as
92%. Also, find the pull on the coupling at this
speed. '

If all the power is used by the loading trailor,
determine the pull in the coupling at 50 km/h
and the load put on the trailor.

Solution
M=1400+800=2200kg  A=24m°
P=40000 W n=092
V=50 km/h

R~ (0.011 +0.000 06 ¥) Mg + 0.028 AV

=(0.011 + (L0000 06 x 50) x 2200 x 9.8] + 0.028

x 2.4 x (50
=302+ 168
=470 N
wo Py
Brake power available = n
_ [50 x| O{IO)
40000 =593\ 3600
F,.=2650N

As F_ is quite large as compared to R, the jeep is

adequate for the job.
Extra pull available =2630-470=2180 N

The pul} in coupling={0.011 + 0.00006 ¥} Mg

Brakes and Dynamometers 5ﬁ=

(assuming no  wind
resistance on the front of
trailer)
= (0011 + 0.000 06 x 50}
x 800 x 9.81
=110N
Total pull at the coupling with extra load

=2180+ 110=22%0N

With extra load M

2290 =(0.011 +0.000 06 x 50 % (800 + M) x 9.81
8O0+ M= 16674

M=15874kg

Example 15.20 A truck is propelled in second
gear up a gradient of 12%.
The mass of the truck is 4400
kg, the speed is 32 km/h
and the frontal area is 6 m’. The iractive
resistance of the truck is given by

R, = 0.015 Mg + 0.0384V°

where R, is the tractive resistance in N, M is the
mass in kg, A is the frontal area in m’ and V is
the velocity in km/h. Find the minimum power
and the gear ratio in the second gear.

If the engine runs at 2400 rpm, what will be
the minimum speed of this vehicle in the rop gear
on the level road if the efficiency is taken as 92%
and the back axle ratio as 4.027 Also find the
gear ratio in the top gear.

Solution
M = 4400 kg A=6m?
G, =0.12 n =0.82and 0.92
¥ =32 kovh r.=04m
321000
3600
=82.889 m/s
2 x 2400
o, = 50 =80x

In the first case, gradient resistance is also to be

considercd.

R,=0.015 Mg + 0.0384V? + Mg.G,

=(0.015+ G,) Mg +0.038 412
=(0.015+0.12)x 4400 X 9.81 + 0.038 x 6 X (32)°
= 5827 +234

= 6061 N
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Now,
R.v 606l 32x1000
Brake power, P = T = m(w]
=67 700 W or 67.7 kW
G= D
@, x Back axle ratio

—_ w‘?

B {v/r}x Back axle ratic

_ 80rx

" (8.889/0.4)x 4.02

= 2.81
In the 10p gear on a level road
R, =0.015 Mg + 0.038.4}7
=0.015 x 4400 x 9.81 + 0.038 x 6 x }*

=5827+234
=606]1 N

1. A brake is an appliance used to apply frictional
resistance to a moving body to stop or retard it by
absorbing its kinetic energy.

. The functional difference between a clutch and
& brake is that a clutch connects two moving
members of a machine whereas a brake connects a
moving member to a stationary member,

. The main types of mechanical brakes are block or
shoe brake, band brake, band and block bmke and

67 700 =

po B
n

(0.015X 4400 9.81+0.038x 6 x V"2 )V
0.92

647.46V +0.228V% = 224 222

Summary

“internal expanding shoe brake. g.
. A biock or shoe brake consists of a block or shoe
which is pressed against a rotating drum. The force
on the drum is increased by using a lever. 10.
. Aband brake consists of a rope, belt or flexible steel
band {lined with friction material) which is pressed 11,
against the external surface of a cylindrical drum
when the brake is applied.
- A band and block brake consists of a number of 12.
wooden blocks secured inside a flexibie stee! band
which are pressed against the drum when the
brake is applied.
Exercises
. What is a brake? What is the difference between a 4
brake and a ¢lutch?
2. What are various types of brakes? Describe briefly. 5.
. With the help of a neat sketch explain the working
of a block or shoe brake. 6.

V =90 km/h
901000

3600
=25m/s
me
@, % Back axle ratio

— mﬁ’
B (¥ / r) x Back axleratio
_80mx04
T 25%4.02

An internal expanding shoe brake cansists of two
semi-circular shoes which are fined with a friction
matetial such as ferodo. The shoes press against
the inner flange of the drum when the brakes are
applied.

The power required for propulsion of a wheeled
vehicle depends mainly on the tractive resistance,
i.e., the resistance faced by the vehicle on the
road.

The main components of the tractive resistance
are the road resistance, aerodynamic resistance and
gradient resistance.

Roadresistance consists of twotypes of resistances:
rolling resistance and frictional resistance.
Aerodynamic resistance is the resistance posed
by air or wind and depends upon the speed of the
vehicle, its shape and the wind velocity.

Gradient resistance depends upon the weight of
the vehicle and the gradient of the surface and is
independent of the vehicle speed.

What is meant by a seif-locking and a self-
energised brake,

Discuss the effectiveness of a band brake under
various conditions.

Describe the working of a band and block brake




10.

11.

12.

with the help of a neat sketch. Deduce the relation
for ratio of tight and slack side tensions.

. What is the advantage of a self-expanding shoe

brake? Derive the relation for the fricticn torgue
for such a brake.

. Discuss the effect of applying the brakes to a

vehicle when

{i) brakes are applied to the rear wheels only
(i) brakes are applied to the front wheels only
(i) brakes are applied to all the four wheels

. What is meant by tractive resistance in case of

wheeled vehicle? What are its main components?
Explain the following in case of a wheeled vehicle:
(i} Road Resistance

{iiy Aerodynamic resistance

{itiy Gradient resistance

In a brake shoe applied to a drum Fig. 15.23, the
radius of the drum is 8o mm and the coefficient of
friction at the brake lining is 0.3. For the counter-
clockwise rotation of the drum, determine the
braking torque due to a force of 400 N applied at
the end of the lever. {21.9N.m)

Figure 15.24 shows a simple band brake which is
applied to a shaft carrying a flywheel of 300-kg
mass and of radius of gyration 280 mm. The drum
diameter is 220 mm and the shaft speed 240 rpm.
The coefficient of friction is 0.3. Find the brake
torque when a force of 100 N is applied at the lever
end. Also, determine the number of turns of the

|-—1206—4ﬁ-— 300 —]

100 N

13.

14.

15.
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flywheel and time taken by it befere coming to
rest. (18.34 N.m, 64.5 rev, 16.13 5)
Forthe shoe brake shownFig. 15.25, the diameter of
the brake drum is 400 mm and the angle of contact
i5 g6°. The applied force is 3 kN on each arm and
the coefficient of friction between the drum and
the lining is ¢.35. Determine the maximum torque
transmitted by the brake. {2324 N.m)

) ™
T O3 kN 3 kN=—C

A bicycle and rider having a mass of 120 kg and
travel at 14 km/h on a level road. A brake is applied
tothe rear wheel of goo mm diameter. The pressure
on the brake is 110 N and the coefficient of friction
is 0.05. What will be the distance covered by the
bicycle and number of turns taken by its wheel
before coming to rest? - {164.9m, 58.3)
Figure 15.26 shows the arrangement of a double
block shoe brake. A turn buckle which has right
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16,

17.

18.

and left-handed threads of six-start with a lead of
45 mm is used to apply the force to each block.
The diameter of the turn buckle is 30 mm and it is
rotated by a lever. Each block subtends an angle
of ga® at the centre of the drum. The coefficient of
friction for the brake blocks is 0.4 and for the screw
and the nut is 0.15. Find the brake torque applied
by a force of 120 N at the end of the lever.
(875.7 N.m)
The band brake shown in Fig. 15.27 is applied to
a shaft carrying a flywheel of 300-kg mass with a
radius of gyration of 400 mm and running at 340
rpm. Find the torque applied dve to a pull of 100 N
if £ = 0.25. Also, fing the number of revolutions of
the fiywheel before it comes to rest.
(794 N.m; 6.1rev.)

A crane is ysed to support a Joad of 1.1 tonne on
the rope round its barrel of 360 mm diameter
(Fig. 15.14). The brake drum diameter is 560 mm,
the angle of contact is 300° and the coefficient of
friction between the band and the drum is .32
What will be the force £ required at the end of the
lever? Take & = 150 mm and ! = 800 mm.

{1902 N}
A band and block brake has 10 blocks and each
block subtends an angle of 15° at the centre of
the wheel. The two ends of the band are fixed to
pins on the opposite sides of the brake fulcrum at
distances of 4,0 mm and 200 mm from it. Determine
the maximum force required to be applied on the

19.

20,

21,

22,

lever at a distance of 300 mm from the fulcrum to
absorb 250 kW of power at 280 rpm. The effective
diameter of the drum is 840 mm. Take 1 = 0.35.
{4440 N)
An internal expanding shoe brake has a diameter
of 320 mm and a width of 30 mm. The cam forces
are equal. Maximum pressure is not to exceed
Bo kN/m™ @,= 15% @, = 145%, 4 = 220 mm, ¢ =
125 mm and i = 0.32 {Fig. 15.16). Determine the
actuating force and the brake torque.
{275.7 N; 48 N.m)
The foliowing data refer to a car in which brakes
are applied to the front wheeis:
Wheelbase=2.8m
Centre of mass from rear axle =1.3m
Centre of mass abave ground fevel = 0.g6 m
Coefficient of friction between road and tyres
= 0.4
If the speed of the car be 40 km per hour, find the
distance travelled by the car befare coming to rest
when the car
(iy movesupanincline1in i
{it} movesdown anincline 1in 16
(i) moves on a level track
(22.5m; 40.89 m; 29.03 m}
The following data refer to a laboratory experiment
with rope brake:
Diameter of the flywheel = 1 m
Diameter of the rope = 10 mm
Dead weight on the brake = 50 kq
Speed of the engine = 180 rpm
Spring balance reading = 120 N
Find the power of the engine.
(3527 W)
In a belt transmission dynamormneter (Fig. 15.20),
the diameters of the driving and driven pulleys
are 0.36 m and 0.8 m respectively. The power
transmitted from the driving to the driven shaft is
20 kW. The speed of the driving shaft is 500 rpm. If
{=1.2mand g = 400 mm, determine the weight on
the lever. (144.2 kq)



